Cellular Interactions of VSV Nucleocapsids
VSV 核衣壳的细胞相互作用
基本信息
- 批准号:9512738
- 负责人:
- 金额:$ 42.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-06-20 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:ActinsAdaptor Signaling ProteinAddressAnimal ModelAntiviral AgentsBiological AssayCapsidCell NucleusCell membraneCell physiologyCellsCellular MembraneCellular biologyCharacteristicsChemicalsComputer softwareConflict (Psychology)Confocal MicroscopyCoupledCytoplasmCytoskeletonDataDependenceDiffuseDiseaseElementsEnsureEpithelial CellsFluorescence MicroscopyGTP-Binding ProteinsGoalsHela CellsImageImage AnalysisIndividualInfectionKineticsLeadLiteratureMalignant NeoplasmsMembraneMembrane ProteinsMethodsMicrofilamentsMicrotubulesMolecular MotorsMotionMotorMovementMusMyosin ATPaseNeuraxisNeuronsNucleocapsidNucleoproteinsPathogenicityPathway interactionsPharmacologyPhysiologic pulsePlayProcessProteinsProteomicsRNA InterferenceRNA VirusesRNA chemical synthesisRoleSeriesShapesSiteSkeletonSorting - Cell MovementSupporting CellThinkingTubular formationVesicular stomatitis Indiana virusViralVirionVirusVirus AssemblyVirus Replicationanalytical methodanalytical toolbasecell typecellular imagingcrosslinkexperimental studyfluorescence imaginggenetic informationimaging approachlive cell imagingnervous system disordernovelnovel strategiesparticleprototypeviral RNAvirology
项目摘要
The structural elements of the cell are never randomly distributed. Both the cytoplasm and nucleus are
organized into different functional regions. The mechanisms of regionalization are important for understanding
normal cellular physiology as well as disease states such as cancer or neurological diseases. Viruses take
advantage of the regional organization within their host cells, resulting in enhanced virus replication and
pathogenicity. The question of regionalization of the cytoplasm is a particularly important one for the
nucleoprotein core (nucleocapsid) of negative strand RNA viruses because of the diversity of roles
nucleocapsids play in the virus replication cycle. In particular, their roles as templates for viral RNA synthesis
occur in regions of the cytoplasm that are distinct from the sites at which they are incorporated into progeny
virions by budding from the host plasma membrane. Nucleocapsids are too large to diffuse freely in the
cytoplasm, so there must be specific transport mechanisms to ensure their proper distribution. The proposed
experiments address these mechanisms for the prototype negative strand RNA virus, vesicular stomatitis virus.
We have developed two new cellular imaging approaches to quantify the movement of cellular elements to
address these hypotheses. The first approach, which we call the border-to-border distribution method,
quantifies the steady state distribution. The second involves improvement of live cell imaging approaches to
determine the kinetics of particle movement that are particularly well suited to analyze actin-dependent motion.
Using these approaches, our data show that nucleocapsids are transported toward the cell periphery by both
actin filaments and microtubules. However, our data indicate that actin filaments are more important than
microtubules in reaching the ultimate sites of virus assembly. Furthermore, the distribution of nucleocapsids in
the cytoplasm appears to be coupled to membranes of the secretory pathway. These new analytical tools will
be used in Aim 1 to determine the role of different myosin motors in establishing the distribution of
nucleocapsids in the cytoplasm and incorporation into virions. Specific Aim 2 is to determine the dependence
of nucleocapsid distribution on cellular membranes of the secretory pathway. These experiments will focus on
GTP-binding proteins involved in membrane sorting and transport, and host membrane proteins associated
with membrane-bound nucleocapsids identified by a series of new proteomics experiments. In Aim 3 the
mechanisms of nucleocapsid distribution in polarized epithelial cells and neurons will be determined, since
these represent the cell types involved in the natural infection by VSV. The proposed experiments challenge
and seek to shift the current thinking on the mechanisms of interaction of viral capsids with the host
cytoskeleton and membranes. They are also based on novel concepts and analytical methods that should be
of general applicability in cell biology.
细胞的结构元素从来都不是随机分布的。细胞质和细胞核都是
划分为不同的功能区域。区域化机制对于理解很重要
正常细胞生理学以及癌症或神经系统疾病等疾病状态。病毒采取
利用宿主细胞内的区域组织的优势,从而增强病毒复制和
致病性。细胞质的区域化问题对于细胞质的研究来说是一个特别重要的问题。
由于作用的多样性,负链RNA病毒的核蛋白核心(核衣壳)
核衣壳在病毒复制周期中发挥作用。特别是,它们作为病毒 RNA 合成模板的作用
发生在与它们并入后代的位点不同的细胞质区域
病毒粒子从宿主质膜上出芽。核衣壳太大而不能在细胞内自由扩散
细胞质,因此必须有特定的运输机制来保证它们的正确分布。拟议的
实验针对原型负链 RNA 病毒(水泡性口炎病毒)解决了这些机制。
我们开发了两种新的细胞成像方法来量化细胞元素的运动
解决这些假设。第一种方法,我们称之为边界到边界分布方法,
量化稳态分布。第二个涉及活细胞成像方法的改进
确定颗粒运动的动力学,特别适合分析肌动蛋白依赖性运动。
使用这些方法,我们的数据表明,核衣壳通过两种方式运输到细胞外围:
肌动蛋白丝和微管。然而,我们的数据表明肌动蛋白丝比
微管到达病毒组装的最终位点。此外,核衣壳的分布
细胞质似乎与分泌途径的膜偶联。这些新的分析工具将
用于目标 1 以确定不同肌球蛋白马达在建立肌球蛋白分布中的作用
细胞质中的核衣壳并掺入病毒粒子。具体目标 2 是确定依赖性
分泌途径细胞膜上核衣壳的分布。这些实验将集中于
GTP 结合蛋白参与膜分选和运输,以及与宿主膜蛋白相关
通过一系列新的蛋白质组学实验鉴定出膜结合的核衣壳。在目标 3 中
极化上皮细胞和神经元中核衣壳分布的机制将被确定,因为
这些代表参与 VSV 自然感染的细胞类型。提出的实验挑战
并寻求改变目前对病毒衣壳与宿主相互作用机制的看法
细胞骨架和细胞膜。它们还基于新颖的概念和分析方法,这些概念和分析方法应该
具有在细胞生物学中的普遍适用性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DOUGLAS S. LYLES其他文献
DOUGLAS S. LYLES的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DOUGLAS S. LYLES', 18)}}的其他基金
RNA-Binding Proteins and Host Shut-Off by VSV
RNA 结合蛋白和 VSV 关闭宿主
- 批准号:
8812772 - 财政年份:2014
- 资助金额:
$ 42.36万 - 项目类别:
RNA-Binding Proteins and Host Shut-Off by VSV
RNA 结合蛋白和 VSV 关闭宿主
- 批准号:
9020822 - 财政年份:2014
- 资助金额:
$ 42.36万 - 项目类别:
Structural and Computational Biophysics Training Program
结构和计算生物物理学培训计划
- 批准号:
8284302 - 财政年份:2011
- 资助金额:
$ 42.36万 - 项目类别:
Structural and Computational Biophysics Training Program
结构和计算生物物理学培训计划
- 批准号:
8691895 - 财政年份:2011
- 资助金额:
$ 42.36万 - 项目类别:
Structural and Computational Biophysics Training Program
结构和计算生物物理学培训计划
- 批准号:
8017859 - 财政年份:2011
- 资助金额:
$ 42.36万 - 项目类别:
Structural and Computational Biophysics Training Program
结构和计算生物物理学培训计划
- 批准号:
8881216 - 财政年份:2011
- 资助金额:
$ 42.36万 - 项目类别:
Structural and Computational Biophysics Training Program
结构和计算生物物理学培训计划
- 批准号:
8501566 - 财政年份:2011
- 资助金额:
$ 42.36万 - 项目类别:
相似国自然基金
ARRB调控Wnt/β-catenin信号通路诱导血管内皮细胞necroptosis在非小细胞肺癌外渗与转移中的作用及机制研究
- 批准号:81902350
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
SH3结构域蛋白Dlish调控果蝇Hippo信号通路的分子机制研究
- 批准号:31801190
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
锚定蛋白ENH调控eNOS磷酸化在血管重构中的作用及机制研究
- 批准号:31871399
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
内化接头蛋白HIP1R介导神经元树突生长和分支的作用及其机制研究
- 批准号:31871418
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
接头蛋白GAB1通过SAPKs信号通路调节血管平滑肌细胞自噬参与动脉粥样硬化的机制研究
- 批准号:81700421
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Poldip2 and the Brain Endothelial Barrier Function: Understanding Mechanisms that Regulate the Blood Brain Barrier Integrity
Poldip2 和脑内皮屏障功能:了解调节血脑屏障完整性的机制
- 批准号:
10658239 - 财政年份:2023
- 资助金额:
$ 42.36万 - 项目类别:
Defining WASp-dependent pathways in replication stress
定义复制应激中的 WASp 依赖性途径
- 批准号:
10708353 - 财政年份:2023
- 资助金额:
$ 42.36万 - 项目类别:
Alterations of leukocyte integrin signaling leading to diabetes and autoimmunity
白细胞整合素信号的改变导致糖尿病和自身免疫
- 批准号:
10502136 - 财政年份:2022
- 资助金额:
$ 42.36万 - 项目类别:
LIM domain kinases: regulation and substrate recognition
LIM 结构域激酶:调节和底物识别
- 批准号:
10443356 - 财政年份:2022
- 资助金额:
$ 42.36万 - 项目类别: