INTERVENTION STRATEGIES FOR NON-FOLATE RESPONSIVE NEURAL TUBE DEFECTS

非叶酸反应性神经管缺陷的干预策略

基本信息

  • 批准号:
    9636317
  • 负责人:
  • 金额:
    $ 32.87万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-02-15 至 2021-01-31
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): Neural tube defects (NTDs) are among the most common birth defects in humans. The causes of NTDs are multifactorial, including genetic, environmental, and nutritional factors. Maternal folic acid (FA) status is one of the strongest links to NTD susceptibility. Numerous studies have shown that supplemental FA can reduce NTD prevalence by as much as 70% in some populations. Despite more than 40 years of intensive effort, we still do not understand the mechanisms that underlie these folate-dependent processes. We have begun to address this existing data gap utilizing a new mouse NTD model (Mthfd1l KO) that closely replicates the human NTD phenotype, and does not require additional nutritional intervention to express the NTD phenotype. In this new mouse model, loss of a specific folate-dependent enzyme (mitochondrial MTHFD1L) leads to NTDs. This is the most specific metabolic defect yet associated with NTD susceptibility/etiology, and suggests that FA provides essential one-carbon units for nucleotide and methyl group biosynthesis. These biosynthetic pathways are especially active in the rapidly growing embryo, where they support cell proliferation and death, migration, and differentiation during neural tube closure (NTC). We will test the following specific hypotheses using this mouse model: (1) Maternal supplementation with methionine, purines, thymidylate and S-adenosylmethionine can protect against NTDs in nullizygous Mthfd1l KO (Mthfd1lz/z) embryos, (2) Depakote (Valproic Acid; VPA), the leading cause of pharmaceutical-induced NTDs, inhibits mitochondrial 1C metabolism, thus it is possible that formate can prevent NTDs caused by this teratogen, and (3) cell proliferation and apoptosis, cell migration, and differentiation programs are disrupted in Mthfd1lz/z embryos, leading to neural tube and orofacial defects. We demonstrated that maternal supplementation of MTHFD1L dams with formate, the product of the MTHFD1L enzymatic reaction, decreases the incidence of NTDs and partially rescues the growth deficit in embryos lacking a functional Mthfd1l. In Specific Aim 1 we will determine which supplements downstream of the MTHFD1L reaction can rescue the NTD phenotype. This will be explored in a number of FA responsive and non-responsive NTD mutant strains, and in VPA-sensitive mouse strains. We will identify which cellular processes are dysregulated in Mthfd1lz/z embryos and VPA-sensitive mouse strains, leading to improper NTC. Metabolomic and epigenetic studies will be pursued to fully characterize the mutant mice. Specific Aim 2 will focus on the requirement for formate in neural stem cells and neural crest stem cells using neurosphere growth and differentiation assays, as well as additional epigenetic investigations. Specific Aim 3 will involve DNA resequencing of the human MTHFD1L gene and functional analyses of identified variants in a spina bifida cohort. This research program offers hope for developing the first effective intervention for non-FA responsive NTDs by illuminating the underlying mechanisms by which formate prevents NTDs. Developing interventions that benefit non-folate responsive NTDs is crucial for preventing these preventable birth defects.
 描述(由申请人提供):神经管缺陷(NTD)是人类最常见的出生缺陷之一,NTD 的原因是多因素的,其中遗传、环境和营养因素是其中之一。大量研究表明,补充 FA 可以将某些人群的 NTD 患病率降低多达 70%,尽管经过 40 多年的努力,我们仍然没有做到这一点。了解这些叶酸依赖性过程背后的机制,我们已经开始利用新的小鼠 NTD 模型 (Mthfd1l KO) 来解决现有的数据差距,该模型密切复制人类 NTD 表型,并且不需要额外的营养干预来表达 NTD 表型。在这个新的小鼠模型中,一种特定的叶酸依赖性酶(线粒体 MTHFD1L)的缺失会导致 NTD,这是迄今为止与 NTD 易感性/病因学相关的最特异的代谢缺陷。 FA 为核苷酸和甲基生物合成提供必需的一碳单位,这些生物合成途径在快速生长的胚胎中特别活跃,它们在神经管闭合 (NTC) 过程中支持细胞增殖和死亡、迁移和分化。使用该小鼠模型得出以下具体假设:(1)母体补充蛋氨酸、嘌呤、胸苷酸和 S-腺苷甲硫氨酸可以预防无效合子中的 NTDs Mthfd1l KO (Mthfd1lz/z) 胚胎,(2) Depakote(丙戊酸;VPA)是药物诱导 NTD 的主要原因,它抑制线粒体 1C 代谢,因此甲酸盐可能可以预防由这种致畸剂引起的 NTD,并且( 3) Mthfd1lz/z胚胎中细胞增殖和凋亡、细胞迁移和分化程序被破坏,导致神经管和我们证明,母体补充 MTHFD1L 酶促反应的产物 MTHFD1L 可以降低 NTD 的发生率,并部分缓解缺乏功能性 Mthfd1l 的胚胎的生长缺陷。在具体目标 1 中,我们将确定下游的补充品。 MTHFD1L 反应可以挽救 NTD 表型 这将在许多 FA 反应性和非反应性 NTD 突变体中进行探索。我们将确定 Mthfd1lz/z 胚胎和 VPA 敏感小鼠品系中哪些细胞过程失调,从而导致不正确的 NTC 和表观遗传学研究,以全面表征突变小鼠。目标 2 将重点关注使用神经球生长和分化测定的神经干细胞和神经嵴干细胞对甲酸盐的需求,以及额外的表观遗传学研究将涉及 DNA 重测序。该研究项目通过阐明甲酸盐预防 NTD 的潜在机制,为开发针对非 FA 反应性 NTD 的第一个有效干预措施提供了希望。反应性 NTD 对于预防这些可预防的出生缺陷至关重要。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

DEAN R APPLING其他文献

DEAN R APPLING的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('DEAN R APPLING', 18)}}的其他基金

Intervention Strategies for Non-Folate Responsive Neural Tube Defects
非叶酸反应性神经管缺陷的干预策略
  • 批准号:
    9030613
  • 财政年份:
    2016
  • 资助金额:
    $ 32.87万
  • 项目类别:
Intervention Strategies for Non-Folate Responsive Neural Tube Defects
非叶酸反应性神经管缺陷的干预策略
  • 批准号:
    9225120
  • 财政年份:
    2016
  • 资助金额:
    $ 32.87万
  • 项目类别:
Mammalian Mitochondrial One-Carbon Metabolism
哺乳动物线粒体一碳代谢
  • 批准号:
    7930555
  • 财政年份:
    2009
  • 资助金额:
    $ 32.87万
  • 项目类别:
HUMAN MITOCHONDRIAL CI-TETRAHYDROFOLATE SYNTHASE
人线粒体CI-四氢叶酸合成酶
  • 批准号:
    7011129
  • 财政年份:
    2002
  • 资助金额:
    $ 32.87万
  • 项目类别:
HUMAN MITOCHONDRIAL CI-TETRAHYDROFOLATE SYNTHASE
人线粒体CI-四氢叶酸合成酶
  • 批准号:
    6650971
  • 财政年份:
    2002
  • 资助金额:
    $ 32.87万
  • 项目类别:
HUMAN MITOCHONDRIAL CI-TETRAHYDROFOLATE SYNTHASE
人线粒体CI-四氢叶酸合成酶
  • 批准号:
    6720070
  • 财政年份:
    2002
  • 资助金额:
    $ 32.87万
  • 项目类别:
HUMAN MITOCHONDRIAL CI-TETRAHYDROFOLATE SYNTHASE
人线粒体CI-四氢叶酸合成酶
  • 批准号:
    6623002
  • 财政年份:
    2002
  • 资助金额:
    $ 32.87万
  • 项目类别:
HUMAN MITOCHONDRIAL CI-TETRAHYDROFOLATE SYNTHASE
人线粒体CI-四氢叶酸合成酶
  • 批准号:
    6871182
  • 财政年份:
    2002
  • 资助金额:
    $ 32.87万
  • 项目类别:
HUMAN MITOCHONDRIAL CI-TETRAHYDROFOLATE SYNTHASE
人线粒体CI-四氢叶酸合成酶
  • 批准号:
    6855465
  • 财政年份:
    2002
  • 资助金额:
    $ 32.87万
  • 项目类别:
HUMAN MITOCHONDRIAL CI-TETRAHYDROFOLATE SYNTHASE
人线粒体CI-四氢叶酸合成酶
  • 批准号:
    6721213
  • 财政年份:
    2002
  • 资助金额:
    $ 32.87万
  • 项目类别:

相似国自然基金

GSDME通过诱导细胞非致死性亚溶破促进胃癌腹膜转移的分子机制及治疗策略研究
  • 批准号:
    82303790
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
探索提高受体相荧光量子效率,降低器件非辐射能量损失的新型三元有机光伏体系构筑策略
  • 批准号:
    22309098
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
非均质多孔介质内渗流场与生物膜的互馈机制及调控策略研究
  • 批准号:
    52370097
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
复杂环境下旅游需求预测的非平稳性溯源、稳健建模与精度提升策略研究
  • 批准号:
    72374083
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目

相似海外基金

Role of STING in Cholestatic Liver Injury
STING 在胆汁淤积性肝损伤中的作用
  • 批准号:
    10637131
  • 财政年份:
    2023
  • 资助金额:
    $ 32.87万
  • 项目类别:
Non-invasive vagus nerve stimulation to mitigate subarachnoid hemorrhage induced inflammation
无创迷走神经刺激减轻蛛网膜下腔出血引起的炎症
  • 批准号:
    10665166
  • 财政年份:
    2023
  • 资助金额:
    $ 32.87万
  • 项目类别:
AirPressureNYC: Reducing AIR pollution to lower blood PRESSURE among New York City public housing residents
AirPressureNYC:减少空气污染以降低纽约市公共住房居民的血压
  • 批准号:
    10638946
  • 财政年份:
    2023
  • 资助金额:
    $ 32.87万
  • 项目类别:
Elucidating novel epigenetic modifications implicated in multiple myeloma risk disparities
阐明与多发性骨髓瘤风险差异相关的新型表观遗传修饰
  • 批准号:
    10912191
  • 财政年份:
    2023
  • 资助金额:
    $ 32.87万
  • 项目类别:
Structurally engineered furan fatty acids for the treatment of dyslipidemia and cardiovascular disease
结构工程呋喃脂肪酸用于治疗血脂异常和心血管疾病
  • 批准号:
    10603408
  • 财政年份:
    2023
  • 资助金额:
    $ 32.87万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了