Evaluating Longitudinal Changes in the Human Structural Connectome in Relation to Cognitive Aging
评估与认知衰老相关的人体结构连接组的纵向变化
基本信息
- 批准号:9385440
- 负责人:
- 金额:$ 50.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2022-04-30
- 项目状态:已结题
- 来源:
- 关键词:3 year oldAdultAgeAgingAlgorithmsBirthBrainBrain regionCognitiveCognitive agingCoupledCouplingDataData AnalysesData CollectionData SetDementiaDiffusion Magnetic Resonance ImagingElderlyEnsureEquationGeneticGraphHealthHumanImageImpaired cognitionIndividualInterventionLeftLife StyleLinkLongevityMRI ScansMachine LearningMagnetic Resonance ImagingMeasuresMediatingMedicalMemoryMethodsModelingNerve DegenerationOutcomeParticipantPhysiologicalProcessPropertyQuality of lifeReaction TimeReproducibilityResearchRisk FactorsSamplingScanningSelf CareSpeedStructureSystemTestingTheoretical modelTimeValidationVariantVisuospatialWorkagedbiobankcognitive abilitycognitive changecognitive performancecognitive testingcohortconnectomegenetic predictorsimprovedindexinginterestlearning strategylongitudinal analysismortalitynetwork architecturenovelphysical conditioningpreventsocialtheoriestool
项目摘要
PROJECT SUMMARY
Progressive aging-related cognitive declines are associated with limitations in self-care and functional
independence, deteriorating physical health, and impending dementia and mortality, even among the otherwise
healthy. Identifying and understanding the neurodegenerative processes that underlie cognitive aging is key to
developing interventions to prevent or ameliorate cognitive decline. Disconnection theories of aging specifically
implicate weakening of structural brain connectivity as a key mechanism of cognitive decline, but until recently,
diffusion MRI data and connectomic methods needed to rigorously test such theories have been lacking. To
expedite understanding how aging-related changes in the human structural connectome relate to aging-related
cognitive declines, we will apply the latest connectomic and multivariate data analysis methods to
existing data from two highly unique datasets: (1) The UK Biobank, a cross-sectional sample of
~10,000 40-75 year old adults, who have undergone diffusion MRI scanning, have been measured with
multiple cognitive tests, and have provided extensive sociodemographic and medical information; and
(2) The Lothian Birth Cohort of 1936, a narrow-age cohort of older adults (baseline age = 73 years; N =
731) who have undergone diffusion MRI scanning, have been measured with multiple cognitive tests,
and have provided extensive sociodemographic and medical information on each of three separate
occasions, each separated by three years. Using recently developed graph-theoretic models, we will
construct structural brain connectome networks for each participant's diffusion MRI data at each wave and
extract indices reflective of network topology within several specific networks of interest (NOIs) identified ex
ante. We will also identify topologically central hub regions that disproportionately govern efficiency within each
individual's connectome network. We will apply cross-sectional and longitudinal structural equation models to
examine aging-related transformations in network indices, examine concurrent and longitudinal coupling
between network indices and cognitive abilities, and test predictors of levels and changes in network indices
and cognitive abilities. This will allow us to contrast the predictive utility of the selected NOIs for cognitive aging
and to identify specific features of network architecture involved in cognitive aging and mediate the effects of
demographic, medical, and lifestyle risk factors for cognitive aging. We additionally implement machine-
learning methods to estimate an upper bound of prediction of cognitive aging from network indices, and identify
novel features of network topology as candidate mechanisms of cognitive decline. The availability of two
uniquely large and well-characterized datasets will allow us to ensure that findings are rigorous and
reproducible using within sample (holdout) and between sample cross-validation. For all aims, we will place
considerable emphasis on testing for incremental validity of network indices relative to both conventional
structural neuroanatomical measures and topologically naïve summary indices of network integrity.
项目概要
与衰老相关的进行性认知能力下降与自我护理和功能限制有关
独立性、身体健康状况恶化以及即将发生的痴呆症和死亡,甚至在其他方面也是如此
识别和理解认知衰老背后的神经退行性过程是健康的关键。
制定干预措施来预防或改善衰老的认知衰退理论。
意味着大脑结构连接的减弱是认知能力下降的一个关键机制,但直到最近,
一直缺乏严格检验此类理论所需的扩散磁共振成像数据和连接组学方法。
加快了解人体结构连接组中与衰老相关的变化如何与衰老相关
认知能力下降,我们将应用最新的连接组和多元数据分析方法来
来自两个高度独特的数据集的现有数据:(1)英国生物银行,一个横截面样本
约 10,000 名 40-75 岁的成年人接受了扩散 MRI 扫描,并使用
多项认知测试,并提供了广泛的社会人口统计和医疗信息;以及
(2) 1936 年洛锡安出生队列,一个狭窄年龄的老年人队列(基线年龄 = 73 岁;N =
第731章 731)
并提供了关于三个独立的每一个的广泛的社会人口统计和医疗信息
使用最近开发的图论模型,每次相隔三年。
为每个参与者的每个波的扩散 MRI 数据构建结构性脑连接组网络,并且
提取反映几个特定感兴趣网络(NOI)中的网络拓扑的索引
我们还将确定拓扑中心枢纽区域,这些区域在每个区域内不成比例地控制效率。
我们将应用横截面纵向和结构方程模型来分析个体的连接组网络。
检查网络指数中与老化相关的转换,检查并发和纵向耦合
网络指数和认知能力之间的关系,并测试网络指数水平和变化的预测因子
这将使我们能够比较所选 NOI 对认知衰老的预测效用。
并识别与认知老化有关的网络架构的具体特征并调节认知老化的影响
我们还实施了机器认知老化的人口、医疗和生活方式风险因素。
根据网络指数估计认知老化预测上限的学习方法,并识别
网络拓扑的新特征作为认知衰退的候选机制 两种可用性。
独特的大型且特征明确的数据集将使我们能够确保研究结果严谨且
对于所有目标,我们将在样本内(保留)和样本之间进行可重复的交叉验证。
相当重视测试网络相对指数相对于传统指数的增量有效性
结构神经解剖学测量和网络完整性的拓扑朴素总结指数。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Elliot Max Tucker-Drob其他文献
Elliot Max Tucker-Drob的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Elliot Max Tucker-Drob', 18)}}的其他基金
Large-Scale Genomic Analysis of Aging-Related Cognitive Change Prior to Dementia Onset
痴呆症发病前与衰老相关的认知变化的大规模基因组分析
- 批准号:
10280400 - 财政年份:2021
- 资助金额:
$ 50.25万 - 项目类别:
Evaluating Longitudinal Changes in the Human Structural Connectome in Relation to Cognitive Aging
评估与认知衰老相关的人体结构连接组的纵向变化
- 批准号:
10163115 - 财政年份:2017
- 资助金额:
$ 50.25万 - 项目类别:
Evaluating Longitudinal Changes in the Human Structural Connectome in Relation to Cognitive Aging
评估与认知衰老相关的人体结构连接组的纵向变化
- 批准号:
9925718 - 财政年份:2017
- 资助金额:
$ 50.25万 - 项目类别:
Cortisol, Socioeconomic Status, and Genetic Influences on Cognitive Development
皮质醇、社会经济地位和遗传对认知发展的影响
- 批准号:
9030328 - 财政年份:2016
- 资助金额:
$ 50.25万 - 项目类别:
Gene-Environment Interplay in Early Cognitive Development
早期认知发展中的基因与环境相互作用
- 批准号:
8174873 - 财政年份:2011
- 资助金额:
$ 50.25万 - 项目类别:
Gene-Environment Interplay in Early Cognitive Development
早期认知发展中的基因与环境相互作用
- 批准号:
8290284 - 财政年份:2011
- 资助金额:
$ 50.25万 - 项目类别:
相似国自然基金
单核细胞产生S100A8/A9放大中性粒细胞炎症反应调控成人Still病发病及病情演变的机制研究
- 批准号:82373465
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
成人型弥漫性胶质瘤患者语言功能可塑性研究
- 批准号:82303926
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SERPINF1/SRSF6/B7-H3信号通路在成人B-ALL免疫逃逸中的作用及机制研究
- 批准号:82300208
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于动态信息的深度学习辅助设计成人脊柱畸形手术方案的研究
- 批准号:82372499
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Neonatal Optical Coherence Tomography Angiography to Assess the Effects of Postnatal Exposures on Retinal Development and Predict Neurodevelopmental Outcomes
新生儿光学相干断层扫描血管造影评估产后暴露对视网膜发育的影响并预测神经发育结果
- 批准号:
10588086 - 财政年份:2023
- 资助金额:
$ 50.25万 - 项目类别:
Predictive ability of early somatosensory processing in preterm children on later motor development
早产儿早期体感处理对后期运动发育的预测能力
- 批准号:
10638542 - 财政年份:2023
- 资助金额:
$ 50.25万 - 项目类别:
Leveraging technology to identify outcome measures for young children with Down syndrome
利用技术确定唐氏综合症幼儿的治疗结果
- 批准号:
10841215 - 财政年份:2023
- 资助金额:
$ 50.25万 - 项目类别:
Addressing Structural Disparities in Autism Spectrum Disorder through Analysis of Secondary Data (ASD3)
通过二手数据分析解决自闭症谱系障碍的结构性差异 (ASD3)
- 批准号:
10732506 - 财政年份:2023
- 资助金额:
$ 50.25万 - 项目类别: