Lipid Signaling in Chemotaxis
趋化作用中的脂质信号传导
基本信息
- 批准号:8325132
- 负责人:
- 金额:$ 30.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-30 至 2014-08-31
- 项目状态:已结题
- 来源:
- 关键词:1-Phosphatidylinositol 3-KinaseActinsArthritisAsthmaAtherosclerosisBindingBinding ProteinsBiochemistryBiological AssayBiological ModelsCell membraneCellsCellular biologyChemicalsChemotactic FactorsChemotaxisComplexCytoskeletonDefectDevelopmentDictyosteliumDictyostelium discoideumDiseaseEukaryotic CellEventExperimental ModelsGenesGeneticGoalsGuanine Nucleotide Exchange FactorsHuman bodyIn VitroInflammationLeadLifeLinkLipidsMaintenanceMalignant NeoplasmsMediatingMolecularMorphogenesisNeoplasm MetastasisOutcomePH DomainPTEN genePathogenesisPathway interactionsPhosphatidylinositolsPhospholipase A2Phosphoric Monoester HydrolasesPhosphorylationPhysiologicalPlayPostdoctoral FellowProcessProductionProtein BindingProteinsProteomicsRegulationResearchResearch ProposalsRoleSignal PathwaySignal TransductionSignaling MoleculeSourceSurfaceTissuesTranslatingTwo-Hybrid System TechniquesWorkWound HealingYeastsaxon guidancebasecancer therapycell motilitycellular imagingextracellulargenetic regulatory proteingenome wide association studygenome-widehuman Huntingtin proteinhuman diseasein vivoinsightmembernovelphosphoinositide-3,4,5-triphosphatepolymerizationprofessorpublic health relevanceran-binding protein 1responserho GTP-Binding Proteinstripolyphosphatetumor
项目摘要
DESCRIPTION (provided by applicant): Chemotaxis, a process in which cells migrate toward higher concentrations of chemoattractants, is important for a variety of physiological events such as axon guidance, wound healing, and tissue morphogenesis. Inappropriate chemotaxis leads to many human diseases including tumor metastasis, asthma, arthritis and atherosclerosis. The long-term goal of our research is to reveal the molecular mechanism of chemotaxis and to understand the pathogenesis of chemotaxis- related human diseases. Using Dictyostelium discoideum as our experimental model system, we have demonstrated that phosphatidylinositol 3,4,5 triphosphate (PIP3) plays a critical role for intracellular signaling in chemotaxis. PIP3 is highly enriched at the leading edge of cells and activates downstream signaling events such as remodeling of the actin cytoskeleton. We have demonstrated that the intracellular level and localization of PIP3 are regulated by a lipid phosphatase, PTEN. PTEN is located at the rear end of chemotaxing cells and restricts the production of PIP3 at the leading edge. The local accumulation of PIP3 stimulates actin polymerization to extend pseudopods toward the source of chemoattractant. To date, it is unknown how the localization and activity of PTEN are regulated, and how PIP3 signaling is translated into reorganization of the actin cytoskeleton. In this research proposal, we will use a combination of genetics, biochemistry, cell biology and proteomics to achieve the following specific aims: 1) To determine how phosphorylation regulates the localization and activity of PTEN; 2) To define the functions of two proteins required for chemotaxis - Huntingtin and GxcT, a novel guanine nucleotide exchange factor for Rho GTPases; 3) To identify novel components that link PIP3 signaling and the actin cytoskeleton using proteomic approaches as well as genome-wide characterization of PH-domain containing proteins. The outcomes of our research are expected to provide novel insights into molecular mechanisms of chemotaxis and may lead to development of chemotaxis-based treatments for cancer and inflammation.
PUBLIC HEALTH RELEVANCE: We study chemotaxis, a process in which cells sense extracellular chemical compounds and move toward the source of chemicals. Chemotaxis is highly relevant to development and maintenance of healthy human body as well as the pathogenesis of many diseases such as cancer, asthma, arthritis and atherosclerosis. The long-term goal of our study is to understand how chemotaxis works and how defects in chemotaxis cause human diseases using a variety of approaches including genetics, biochemistry, cell biology and proteomics.
描述(由申请人提供):趋化性,即细胞向更高浓度的趋化剂迁移的过程,对于各种生理事件,例如轴突引导,伤口愈合和组织形态发生很重要。不适当的趋化性导致许多人类疾病,包括肿瘤转移,哮喘,关节炎和动脉粥样硬化。我们研究的长期目标是揭示趋化性的分子机制,并了解趋化性相关的人类疾病的发病机理。使用DICEDYOSTELIUM DISCOIDEUM作为我们的实验模型系统,我们证明了磷脂酰肌醇3,4,5三磷酸(PIP3)在趋化性中的细胞内信号传导起着至关重要的作用。 PIP3在细胞的前缘高度富集,并激活下游信号传导事件,例如肌动蛋白细胞骨架的重塑。我们已经证明,PIP3的细胞内水平和定位受脂质磷酸酶PTEN调节。 PTEN位于趋化细胞的后端,并限制了前缘的PIP3的产生。 PIP3的局部积累刺激了肌动蛋白聚合,以将伪足扩展到趋化剂的来源。迄今为止,尚不清楚如何调节PTEN的定位和活性,以及如何将PIP3信号转化为肌动蛋白细胞骨架的重组。在这项研究建议中,我们将使用遗传学,生物化学,细胞生物学和蛋白质组学的结合来实现以下特定目的:1)确定磷酸化如何调节PTEN的定位和活性; 2)定义趋化性 - 亨廷顿和GXCT所需的两种蛋白质的功能,这是一种新型的鸟嘌呤核苷酸交换因子,用于Rho GTPase; 3)确定使用蛋白质组学方法以及含有pH核蛋白的全基因组表征将PIP3信号传导和肌动蛋白细胞骨架连接起来的新型组件。我们的研究结果有望提供对趋化性分子机制的新见解,并可能导致基于趋化性的癌症和炎症治疗的发展。
公共卫生相关性:我们研究趋化性,在这种过程中,细胞感知细胞外化合物并朝着化学物质的来源转移。趋化性与健康人体的发展和维持以及许多疾病(例如癌症,哮喘,关节炎和动脉粥样硬化)的发病机理高度相关。我们研究的长期目标是了解趋化性的工作原理以及趋化性缺陷如何使用遗传学,生物化学,细胞生物学和蛋白质组学等多种方法引起人类疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Miho Iijima其他文献
Miho Iijima的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Miho Iijima', 18)}}的其他基金
Mechanism and Function of the Supercomplex KARATE in Insulin Signaling
超级复合物空手道在胰岛素信号传导中的机制和功能
- 批准号:
10444290 - 财政年份:2022
- 资助金额:
$ 30.54万 - 项目类别:
Mechanism and Function of the Supercomplex KARATE in Insulin Signaling
超级复合物空手道在胰岛素信号传导中的机制和功能
- 批准号:
10601093 - 财政年份:2022
- 资助金额:
$ 30.54万 - 项目类别:
相似海外基金
Elucidation of a eukaryotic chemorepulsion mechanism
阐明真核化学排斥机制
- 批准号:
9357616 - 财政年份:2016
- 资助金额:
$ 30.54万 - 项目类别:
Elucidation of a eukaryotic chemorepulsion mechanism
阐明真核化学排斥机制
- 批准号:
9237701 - 财政年份:2016
- 资助金额:
$ 30.54万 - 项目类别: