Development and clinical interpretation of machine learning emergency department suicide prediction algorithms using electronic health records and claims
使用电子健康记录和索赔的机器学习急诊科自杀预测算法的开发和临床解释
基本信息
- 批准号:10809977
- 负责人:
- 金额:$ 30.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-05 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:Accident and Emergency departmentAddressAlgorithmsArtificial IntelligenceCaringCessation of lifeCharacteristicsClinicalClinical DataComplexComputational algorithmCrisis InterventionDataData AnalyticsData SetData SourcesDatabasesDevelopmentDiagnosisDrug PrescriptionsElectronic Health RecordEmergency CareEmergency Department PhysicianEmergency Department evaluationEmergency MedicineEmergency department visitEventHealthHealthcare SystemsInterventionKnowledgeLinkMachine LearningMedicalMental HealthMental Health ServicesMental disordersMethodsModelingOrganizational ModelsOutcomeOutpatientsOutputPatientsPatternPersonsPhysiciansPreventionProceduresProcessProviderPsychiatristPublic HealthRecording of previous eventsResearchResourcesRiskRisk AssessmentRisk FactorsRisk ManagementServicesSuicideSuicide attemptSuicide preventionSymptomsTechniquesTimeTranslatingUpdateVisitanalytical methodclinical decision supportclinical encounterclinical riskdata miningemergency settingsfollow-uphealth service usehigh riskimprovedindexinginnovationinsightinterestmachine learning methodmachine learning modelmodel developmentprediction algorithmpredictive modelingprototyperisk predictionsuicidalsuicidal behaviorsuicidal morbiditysuicidal patientsuicidal risksupport toolstrait
项目摘要
Project Summary
Preventing suicide is one of the great public health challenges facing the US health care
system. People who seek emergency care for mental health complaints are at high short-term
risk of non-fatal suicide events and suicide. Yet identifying high-risk patients is challenging as
risk fluctuates in a poorly understood manner. It is especially difficult to evaluate risk in
emergency settings, where access to the patient's mental health history is often limited. The
proposed project seeks to address this critical knowledge gap by pairing data mining and
machine learning methods with rich data sources in order to develop short-term prediction
models of non-fatal suicidal events and suicide for patients presenting to EDs with mental health
problems.
The specific aims of this study are to 1) apply advanced machine learning data analytic
techniques to electronic health record (EHR) data to develop a clinically rich description of ED
mental health patient characteristics that predict suicide and non-fatal suicidal events over a 90-
day follow-up period; 2) use longitudinal and temporal features of EHR and claims data from the
180 days preceding the ED mental health visit to generate clinically interpretable suicide and
suicidal event risk scores; and 3) convene ED physicians to enhance model development,
clinical interpretability, and utility of a suicide risk assessment clinical decision support tool.
We will achieve these aims by leveraging several different sophisticated machine learning
analytic methods of existing longitudinal clinical and service use information. We seek to
develop point-in-time, short-term risk scores for suicidal symptoms and suicide death and the
clinical features that drive that risk that may be used to inform clinical risk assessment and
management of patients who present to EDs with mental health complaints. Risk algorithms will
be developed and validated using health information from a large combined EHR and claims
dataset with over 24 million commercially insured patients, which is linked to the National Death
Index. Findings will yield new insights regarding patient-specific risk factors and potential targets
for intervention. By drawing on data sources common to most health care systems and using
efficient computer algorithms this approach has the potential to develop clinically interpretable
suicide risk scores at the point of ED evaluation and following disposition. This will help front-
line clinicians focus their efforts on high risk patients during high risk periods to inform
intervention decisions about suicide risk.
项目概要
预防自杀是美国医疗保健面临的重大公共卫生挑战之一
系统。因心理健康问题寻求紧急护理的人短期处于高水平
非致命性自杀事件和自杀的风险。然而,识别高危患者具有挑战性,因为
风险以一种人们知之甚少的方式波动。评估风险尤其困难
在紧急情况下,了解患者的心理健康史往往受到限制。这
拟议的项目旨在通过将数据挖掘和
具有丰富数据源的机器学习方法,以开发短期预测
非致命性自杀事件和心理健康患者自杀模型
问题。
本研究的具体目标是 1)应用先进的机器学习数据分析
技术对电子健康记录 (EHR) 数据进行丰富的临床描述
预测 90 岁以上自杀和非致命自杀事件的心理健康患者特征
日间随访期; 2) 使用 EHR 的纵向和时间特征以及来自
急诊科心理健康就诊前 180 天产生临床上可解释的自杀
自杀事件风险评分; 3) 召集急诊科医生加强模型开发,
自杀风险评估临床决策支持工具的临床可解释性和实用性。
我们将通过利用几种不同的复杂机器学习来实现这些目标
现有纵向临床和服务使用信息的分析方法。我们力求
制定自杀症状和自杀死亡的时间点、短期风险评分
驱动风险的临床特征可用于指导临床风险评估和
对向急诊室提出心理健康问题的患者进行管理。风险算法将
使用来自大型综合电子病历和索赔的健康信息进行开发和验证
包含超过 2400 万商业保险患者的数据集,与全国死亡相关
指数。研究结果将产生关于患者特定风险因素和潜在目标的新见解
进行干预。通过利用大多数医疗保健系统通用的数据源并使用
高效的计算机算法这种方法有潜力开发出临床可解释的
急诊室评估时和处置后的自杀风险评分。这将有助于前端
一线临床医生在高风险时期将重点放在高风险患者身上,以告知
关于自杀风险的干预决策。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
STEVEN C MARCUS其他文献
STEVEN C MARCUS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('STEVEN C MARCUS', 18)}}的其他基金
Administrative Data Transfer Masking, Access, and Ethics Core
管理数据传输屏蔽、访问和道德核心
- 批准号:
10774554 - 财政年份:2023
- 资助金额:
$ 30.33万 - 项目类别:
Development and clinical interpretation of machine learning emergency department suicide prediction algorithms using electronic health records and claims
使用电子健康记录和索赔的机器学习急诊科自杀预测算法的开发和临床解释
- 批准号:
10277514 - 财政年份:2021
- 资助金额:
$ 30.33万 - 项目类别:
Development and clinical interpretation of machine learning emergency department suicide prediction algorithms using electronic health records and claims
使用电子健康记录和索赔的机器学习急诊科自杀预测算法的开发和临床解释
- 批准号:
10462646 - 财政年份:2021
- 资助金额:
$ 30.33万 - 项目类别:
Development and clinical interpretation of machine learning emergency department suicide prediction algorithms using electronic health records and claims
使用电子健康记录和索赔的机器学习急诊科自杀预测算法的开发和临床解释
- 批准号:
10631239 - 财政年份:2021
- 资助金额:
$ 30.33万 - 项目类别:
Improving the Emergency Department Management of Deliberate Self-Harm
完善急诊科对故意自残的管理
- 批准号:
9512435 - 财政年份:2017
- 资助金额:
$ 30.33万 - 项目类别:
Improving the Emergency Department Management of Deliberate Self-Harm
完善急诊科对故意自残的管理
- 批准号:
9265516 - 财政年份:2016
- 资助金额:
$ 30.33万 - 项目类别:
Emergency Department Recognition of Mental Disorders and Short-Term Outcome of Deliberate Self-Harm in Older Adults
急诊科对老年人精神障碍和故意自残的短期结果的认识
- 批准号:
9443725 - 财政年份:2016
- 资助金额:
$ 30.33万 - 项目类别:
Improving the Emergency Department Management of Deliberate Self-Harm
完善急诊科对故意自残的管理
- 批准号:
9904783 - 财政年份:2016
- 资助金额:
$ 30.33万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Biomarkers for Brain Resetting as an Assistive Tool in the Treatment of Status Epilepticus
大脑重置生物标志物作为治疗癫痫持续状态的辅助工具
- 批准号:
10698969 - 财政年份:2023
- 资助金额:
$ 30.33万 - 项目类别:
Mixed methods examination of warning signs within 24 hours of suicide attempt in hospitalized adults
住院成人自杀未遂 24 小时内警告信号的混合方法检查
- 批准号:
10710712 - 财政年份:2023
- 资助金额:
$ 30.33万 - 项目类别:
HEAR-HEARTFELT (Identifying the risk of Hospitalizations or Emergency depARtment visits for patients with HEART Failure in managed long-term care through vErbaL communicaTion)
倾听心声(通过口头交流确定长期管理护理中的心力衰竭患者住院或急诊就诊的风险)
- 批准号:
10723292 - 财政年份:2023
- 资助金额:
$ 30.33万 - 项目类别:
Deep Learning Assisted Scoring of Point of Care Lung Ultrasound for Acute Decompensated Heart Failure in the Emergency Department
深度学习辅助急诊室急性失代偿性心力衰竭护理点肺部超声评分
- 批准号:
10741596 - 财政年份:2023
- 资助金额:
$ 30.33万 - 项目类别:
Development of a regional anesthesia guidance system to increase patient access to opioid-sparing analgesia for hip fracture pain
开发区域麻醉引导系统,以增加患者获得髋部骨折疼痛的阿片类药物保留镇痛的机会
- 批准号:
10759550 - 财政年份:2023
- 资助金额:
$ 30.33万 - 项目类别: