Structure-guided functional analysis of GluA4-NPTX2 interaction during PVIN homeostatic scaling
PVIN 稳态缩放过程中 GluA4-NPTX2 相互作用的结构引导功能分析
基本信息
- 批准号:10808384
- 负责人:
- 金额:$ 10.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-15 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AdhesionsAffinityBindingBinding SitesBiochemicalBiochemistryBiologyBiophysicsBrainCationsCell Adhesion MoleculesCell surfaceCellsComplexCryoelectron MicroscopyDataDiseaseDisinhibitionElectrophysiology (science)Excitatory SynapseExhibitsFunctional disorderFutureGeneticGlutamate ReceptorGlutamatesGoalsHealthHumanInterneuronsLearningMembraneMemoryMental disordersMentorsMethodsMissionModelingMolecularMusMutagenesisN-terminalNeuronsNeurosciencesNeurotransmitter ReceptorParvalbuminsPathologyPhysiologyPositioning AttributeProcessPropertyProteinsRegulationResearchRoleSchizophreniaStructural ModelsStructureSurfaceSynapsesSynaptic plasticityTechniquesTestingTherapeuticTrainingTransgenic MiceUnited States National Institutes of HealthWorkantagonistcareerdesignexcitatory neuronexpectationextracellularfunctional outcomeshuman diseaseimprovedinnovationinsightlight microscopymouse modelmutantnervous system disorderneuronal pentraxinneuropsychiatric disorderparticlepharmacologicpostsynapticpresynapticpreventreceptorresponsestoichiometrystructural biologysynaptic functiontenure tracktherapeutic developmenttherapeutic target
项目摘要
PROJECT SUMMARY
AMPA-type glutamate receptors (AMPARs) are the major excitatory neurotransmitter receptors in the
brain and changes in AMPAR number at synapses underlie learning and memory as well as human disease. A
detailed understanding of how AMPARs are organized at synapses is critical to understand how synaptic
strength is regulated and for the development of therapeutics to correct circuit imbalances in human disease.
The long-term goal of this proposal is to use Cryo-EM to understand how the structural basis of AMPAR
N-terminal domain interactions (NTDs) drive functional outcomes such as increased AMPAR accumulation and
synaptic strength. The rationale for this approach is twofold 1) it will help resolve long-standing questions about
the regulation of key neurotransmitter receptors; and 2) a detailed structural model of AMPARs participating in
key regulatory complexes will guide future therapeutic approaches that seek to alter the strength of excitatory
input onto neurons implicated in psychiatric illnesses like schizophrenia. The adhesion protein NPTX2 binds to
AMPARs, clusters AMPARs at synapses, and is required for homeostatic scaling of interneuron-specific GluA4-
containing AMPARs. Therefore, NPTX2-dependent GluA4 scaling is an ideal model for testing the hypothesis
that direct extracellular interactions with AMPARs control synaptic strength. This approach is innovative because
models of AMPAR plasticity have never been observed in structural detail. This research is significant because
it will yield new insights into how AMPAR interactions drive plasticity and how this can be exploited for therapeutic
benefit in the future. An example of such an approach would be a structure-guided therapeutic strategy for
clustering GluA4 on the surface of Parvalbumin-expressing interneurons (PVINs), which exhibit lowered
excitatory drive in models of schizophrenia.
The long-term goal of this project will be achieved with the following two specific aims: 1) Determine the
structure of the NPTX2/GluA4 complex via single particle Cryo-EM. and 2) Test whether NPTX2 drives
GluA4 PVIN scaling through a direct interaction. For the first aim we will employ single-particle Cryo-EM to
solve the structure of the activity-regulated synaptic adhesion molecule NPTX2 in complex with the interneuron-
specific GluA4 AMPARs. For the second aim, we will employ transgenic mouse models, biochemistry, neuron
culture, confocal light microscopy, and electrophysiology to test the hypothesis that direct binding of NPTX2 to
the NTD of GluA4 drives homeostatic scaling in disease-associated PVINs.
The applicant has proposed this work in part to further their long-term goal of establishing an independent
research career connecting the structure of synaptic proteins to their synaptic function. The candidate will
undertake extensive training in Cryo-EM and biophysics which will be facilitated by an expert mentoring team
composed of an AMPAR Cryo-EM expert, an AMPAR plasticity expert, and an expert in NPTX2, all of whom will
mentor the applicant through the transition to a tenure track academic position.
项目摘要
AMPA型谷氨酸受体(AMPARS)是主要兴奋性神经递质受体
大脑和突触中的AMPAR数量的变化是学习和记忆以及人类疾病的基础。一个
详细了解在突触中如何组织AMPAR对于了解突触的方式至关重要
强度受到调节,并用于开发治疗剂以纠正人类疾病中的电路失衡。
该提案的长期目标是使用Cryo-Em了解AMPAR的结构基础
N末端结构域相互作用(NTDS)驱动功能结果,例如增加AMPAR积累和
突触强度。这种方法的理由是双重的1)它将有助于解决有关的长期问题
关键神经递质受体的调节; 2)参与AMPAR的详细结构模型
关键的监管络合物将指导未来的治疗方法,试图改变兴奋的力量
对与精神分裂症等精神病有关的神经元的输入。粘附蛋白NPTX2与
Ampars,簇Ampars在突触下,是间含膜特异性GLUA4-的稳态缩放所必需的
包含AMPAR。因此,NPTX2依赖性GLUA4缩放是检验假设的理想模型
与AMPARS控制突触强度的直接细胞外相互作用。这种方法是创新的,因为
从未在结构细节中观察到AMPAR可塑性的模型。这项研究很重要,因为
它将产生有关AMPAR相互作用如何驱动可塑性以及如何利用治疗的新见解
将来受益。这种方法的一个例子是结构引导的治疗策略
在表达白蛋白的中间神经元(PVIN)的表面上的聚类Glua4,显示出降低
精神分裂症模型中的兴奋性驱动。
以下两个具体目标将实现该项目的长期目标:1)确定
NPTX2/GLUA4复合物通过单个粒子冷冻EM的结构。 2)测试NPTX2是否驱动
GLUA4 PVIN通过直接相互作用进行缩放。对于第一个目的,我们将使用单粒子冷冻EM到
解决活性调节的突触粘附分子NPTX2与中间神经元中的结构
特定的glua4 ampars。为了第二个目标,我们将采用转基因小鼠模型,生物化学,神经元
培养,共聚焦光学显微镜和电生理学,以检验直接结合NPTX2与
GLUA4的NTD驱动与疾病相关的PVIN的稳态缩放。
申请人提出了这项工作,部分是为了进一步建立独立的长期目标
研究职业将突触蛋白与其突触功能联系起来。候选人会
对Cryo-EM和生物物理学进行广泛的培训,这些培训将由专家指导团队促进
由AMPAR Cryo-EM专家,AMPAR可塑性专家和NPTX2专家组成,所有这些都将
通过过渡到任期轨道学术职位,指导申请人。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William Dylan Hale其他文献
William Dylan Hale的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于多尺度表征和跨模态语义匹配的药物-靶标结合亲和力预测方法研究
- 批准号:62302456
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向多场景应用的药物-靶标结合亲和力预测研究
- 批准号:62371403
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于深度学习预测小分子与人类突变激酶结合亲和力的研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
反复非平衡结合联合迭代筛选发掘混合物中痕量高亲和力配体的方法及其应用
- 批准号:82273900
- 批准年份:2022
- 资助金额:52.00 万元
- 项目类别:面上项目
全新从头快速设计靶向COVID-19病毒及其突变株S蛋白超高亲和力阻断结合蛋白研究
- 批准号:
- 批准年份:2022
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
Effect of APP copy number variants in Alzheimer's disease and and Down Syndrome on Reelin expression and function
阿尔茨海默病和唐氏综合症中 APP 拷贝数变异对 Reelin 表达和功能的影响
- 批准号:
10760161 - 财政年份:2023
- 资助金额:
$ 10.3万 - 项目类别:
Phosphatase-dependent regulation of desmosome intercellular junctions
桥粒细胞间连接的磷酸酶依赖性调节
- 批准号:
10677182 - 财政年份:2023
- 资助金额:
$ 10.3万 - 项目类别:
Computational Development of Novel Dyslipidemia Therapeutic Candidates to Disrupt ApoC-III Conformation
破坏 ApoC-III 构象的新型血脂异常治疗候选物的计算开发
- 批准号:
10760187 - 财政年份:2023
- 资助金额:
$ 10.3万 - 项目类别: