Machine Learning and Multiomics for Predictive Models and Biomarker Discovery in Preterm Infants.
用于早产儿预测模型和生物标志物发现的机器学习和多组学。
基本信息
- 批准号:10729640
- 负责人:
- 金额:$ 64.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2028-08-31
- 项目状态:未结题
- 来源:
- 关键词:AdolescentAgeArtificial IntelligenceBioinformaticsBiological MarkersBlood specimenBronchopulmonary DysplasiaChildClinicalClinical DataCollaborationsCollectionData SetDatabasesDigestive System DisordersDiseaseEarly InterventionEnrollmentFecesFunctional disorderFutureGenetic TranscriptionGoalsHealthHistone DeacetylationImmunityInfantInflammationInterventionKnowledgeLifeMachine LearningMediatingMedicineMetabolicMetabolic PathwayMetabolismMissionModelingMonitorMorbidity - disease rateMultiomic DataNational Institute of Child Health and Human DevelopmentNational Institute of Diabetes and Digestive and Kidney DiseasesNecrotizing EnterocolitisNeonatalNeonatologyOutcomePathogenesisPathway interactionsPatient-Focused OutcomesPatientsPediatric HospitalsPremature InfantProspective StudiesProspective cohortPublic HealthResearchResearch DesignRetinopathy of PrematurityRetrospective cohortSamplingScienceSepsisSurvivorsTechniquesTestingTexasTraditional MedicineUnited States National Institutes of HealthUniversitiesUrineValidationVermontVery Low Birth Weight InfantVolatile Fatty Acidsbiomarker discoveryclinical predictive modelcohortcollegedisabilitydysbiosishigh riskhost microbiomeimprovedinnovationintraventricular hemorrhageknowledge baseknowledgebaselate onset sepsismedical schoolsmetabolomemicrobialmicrobial diseasemicrobiomemortalitymultiple omicsnovelprecision medicinepredictive markerpredictive modelingprematureprognosticationprospectivesurvival predictiontool
项目摘要
PROJECT SUMMARY
Preterm infants born at < 32 weeks and <1500 g (very low birth weight, VLBW) suffer from increased mortality
(10-15%) and less than 70% survive without major morbidity. Microbial dysbiosis has been associated with
major preterm morbidities but the microbial metabolites or the mechanisms by which they impact
pathophysiology, survival and morbidity is not known. The purpose of this proposal is to develop holistic
prediction models integrating clinical data and multi-omic signatures, aid biomarker discovery and advance the
paradigm in Neonatal Medicine from traditional to targeted precision medicine. The overarching hypothesis is
that integrating metabolic and multi-omic signatures with clinical data will reliably predict survival and major
morbidity in preterm, VLBW infants. The long-term goal of this research is to establish causal association
between identified microbial metabolites and disease in preterm infants, contribute to the knowledgebase of
microbial metabolites and improve preterm outcomes. We will test our hypothesis using the following Specific
Aims; Aim 1) Leverage machine learning techniques to develop clinical prediction models for mortality and
specific morbidities in preterm, VLBW infants: We will test the hypothesis, that a model integrating clinical
variables in the first 2 wks. of age, will accurately predict mortality, and morbidities of late-onset sepsis, NEC,
BPD, severe ROP and severe IVH. We will employ a retrospective cohort from the Vermont Oxford Database
(VON) from Texas Children’s Hospital, (n= 3385 VLBW infants). We will validate the clinical predictive models
derived from aim 1A with the prospective clinical data from the first 2 weeks, from Aim 2 (n=300), Aim 2)
Delineate microbial metabolites and multi-omic signatures that differentiate preterm VLBW infants with
mortality and morbidity, refine predictive models and enhance biomarker discovery: We will test the hypothesis
that integrating multi-omics signatures with clinical data using machine learning techniques will refine our
predictive models (mortality and specific morbidities of late-onset sepsis, NEC, BPD, ROP and IVH/PVL) for
better accuracy and enhance biomarker discovery. We will accomplish this in a prospective study design of
enrolled preterm (< 32weeks), VLBW infants (n= 300) and collect stool, urine and blood samples, longitudinally
twice a week for 2 weeks of age. We anticipate identifying known and novel metabolites and delineating
metabolic pathways hitherto unidentified that influence preterm pathophysiology and outcomes. Holistic
prediction models using information from the first 2 weeks of life will enable us to introduce interventions early
to improve health trajectories and patient outcomes, thereby facilitating the paradigm of proactive precision
medicine in Neonatology. The impact of our results extend beyond the field of neonatology, to other patients
and diseases where microbial dysbiosis and altered metabolome are key factors in the pathogenesis.
项目概要
< 32 周且 < 1500 克出生的早产儿(极低出生体重,VLBW)死亡率增加
(10-15%) 和不到 70% 的患者在没有严重发病的情况下存活下来。
主要的早产发病率,但微生物代谢物或其影响机制
病理生理学、生存率和发病率尚不清楚。该提案的目的是发展整体性。
整合临床数据和多组学特征的预测模型,有助于生物标志物的发现并推进
新生儿医学从传统医学到靶向精准医学的范式是。
代谢整合和多组学特征与临床数据将可靠地预测生存和重大疾病
本研究的长期目标是建立因果关系。
确定的微生物代谢物与早产儿疾病之间的关系,有助于建立以下知识库:
我们将使用以下具体方法来检验我们的假设。
目的;目的 1) 利用机器学习技术开发死亡率和死亡率的临床预测模型
早产儿、极低出生体重儿的具体发病率:我们将检验这一假设,即整合临床的模型
年龄前 2 周的变量将准确预测死亡率和迟发性败血症、NEC 的发病率。
BPD、严重 ROP 和严重 IVH 我们将采用来自佛蒙特州牛津数据库的回顾性队列。
(VON) 来自德克萨斯儿童医院(n= 3385 名 VLBW 婴儿)。我们将验证临床预测模型。
源自目标 1A 以及前 2 周的前瞻性临床数据,源自目标 2 (n=300)、目标 2)
描述区分早产 VLBW 婴儿的微生物代谢物和多组学特征
死亡率和发病率,完善预测模型并增强生物标志物发现:我们将检验假设
使用机器学习技术将多组学特征与临床数据相结合将完善我们的研究
预测模型(迟发性脓毒症的死亡率和具体发病率、NEC、BPD、ROP 和 IVH/PVL)
我们将通过前瞻性研究设计来实现这一目标。
纳入早产儿(< 32 周)、VLBW 婴儿(n = 300)并纵向收集粪便、尿液和血液样本
我们预计每周两次,持续两周龄。
迄今为止尚未确定的影响早产病理生理学和结果的代谢途径。
使用生命前两周信息的预测模型将使我们能够尽早采取干预措施
改善健康轨迹和患者治疗结果,从而促进主动精准的范例
我们的研究结果的影响超出了新生儿学领域,影响到了其他患者。
以及微生物失调和代谢组是发病机制关键因素的疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mohan Pammi其他文献
Mohan Pammi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mohan Pammi', 18)}}的其他基金
Microbiome Induced Epigenetic Changes in Intestinal Inflammation and Necrotizing Enterocolitis
微生物组诱导肠道炎症和坏死性小肠结肠炎的表观遗传变化
- 批准号:
10198959 - 财政年份:2020
- 资助金额:
$ 64.08万 - 项目类别:
Metagenomics of the circulating blood microbiome and systemic inflammation in preterm infants
早产儿循环血液微生物组和全身炎症的宏基因组学
- 批准号:
9894147 - 财政年份:2020
- 资助金额:
$ 64.08万 - 项目类别:
Microbiome Induced Epigenetic Changes in Intestinal Inflammation and Necrotizing Enterocolitis
微生物组诱导肠道炎症和坏死性小肠结肠炎的表观遗传变化
- 批准号:
9893335 - 财政年份:2020
- 资助金额:
$ 64.08万 - 项目类别:
相似国自然基金
HTRA1介导CTRP5调控脂代谢通路在年龄相关性黄斑变性中的致病机制研究
- 批准号:82301231
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
PLAAT3降低介导线粒体降解异常在年龄相关性白内障发病中的作用及机制
- 批准号:82301190
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
跨尺度年龄自适应儿童头部模型构建与弥漫性轴索损伤行为及表征研究
- 批准号:52375281
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
ALKBH5通过SHP-1调控视网膜色素上皮细胞铁死亡在年龄相关性黄斑变性中的作用机制研究
- 批准号:82301213
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
视网膜色素上皮细胞中NAD+水解酶SARM1调控自噬溶酶体途径参与年龄相关性黄斑变性的机制研究
- 批准号:82301214
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
DSpace: Utilizing Data Science to Predict and Improve Health Outcomes in Pediatric HIV
DSpace:利用数据科学预测和改善儿童艾滋病毒的健康结果
- 批准号:
10749123 - 财政年份:2023
- 资助金额:
$ 64.08万 - 项目类别:
Development and Validation of an Equitable Computable Phenotype for Classifying Pediatric Sleep Deficiency in Electronic Health Records
开发和验证电子健康记录中儿童睡眠不足分类的公平可计算表型
- 批准号:
10724442 - 财政年份:2023
- 资助金额:
$ 64.08万 - 项目类别:
Establishing an Artificially Intelligent Framework for Improving Therapeutic Alliance with Obese African American Youth and Caregivers through Multimodal Monitoring of Empathetic Accuracy and Interper
建立人工智能框架,通过共情准确性和 Interper 的多模式监测来改善肥胖非裔美国青年和护理人员的治疗联盟
- 批准号:
10710204 - 财政年份:2022
- 资助金额:
$ 64.08万 - 项目类别:
Testing the feasibility and acceptability of social media and digital therapeutics to decrease vaping behaviors
测试社交媒体和数字疗法减少电子烟行为的可行性和可接受性
- 批准号:
10671544 - 财政年份:2022
- 资助金额:
$ 64.08万 - 项目类别:
Establishing an Artificially Intelligent Framework for Improving Therapeutic Alliance with Obese African American Youth and Caregivers through Multimodal Monitoring of Empathetic Accuracy and Interper
建立人工智能框架,通过共情准确性和 Interper 的多模式监测来改善肥胖非裔美国青年和护理人员的治疗联盟
- 批准号:
10595321 - 财政年份:2022
- 资助金额:
$ 64.08万 - 项目类别: