Structure-informed dissection of cancer-specific intracellular and paracrine networks
癌症特异性细胞内和旁分泌网络的结构知情解剖
基本信息
- 批准号:10729385
- 负责人:
- 金额:$ 58.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-19 至 2028-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAlgorithmsAutomobile DrivingBehaviorBindingBiological AssayBiomedical EngineeringCancer CenterCell LineCellsColon AdenocarcinomaColonic NeoplasmsCommunitiesComplexCoupledDataDependenceDevelopmentDissectionDrug resistanceEnvironmentFoundationsFundingGene Expression ProfileGenerationsGenetic TranscriptionGoalsHumanIndividualInvestigationKnowledgeLanguageLigandsMalignant - descriptorMalignant NeoplasmsMapsMediatingMethodologyModelingMolecularNatural Language ProcessingNatureNetwork-basedNormal CellOncoproteinsOrganPancreatic Ductal AdenocarcinomaParacrine CommunicationPeptidesPharmaceutical PreparationsPhenotypePhosphoproteinsPhysiologyPrintingProcessProteinsProteomePublicationsReagentResearchResearch PersonnelReverse engineeringScientistSignal TransductionStromal CellsStructureSystemTechniquesTechnologyTherapeuticTimeTissuesValidationWorkanalytical toolcancer cellclinically relevantdeep learningdeep learning algorithmdrug sensitivityextracellularimprovedin vivoindividual variationinnovationintercellular communicationmultiple omicsneoplastic cellnetwork modelsnovelorgan on a chipparacrinepharmacologicphosphoproteomicsprotein protein interactionprotein structurereceptorrecruitresponsesmall moleculesmall molecule inhibitortechnology validationtherapeutic targetthree dimensional structuretumortumor microenvironmenttumorigenic
项目摘要
Understanding cancer cell-autonomous behavior and recruitment of pro-malignant subpopulations to the tumor
microenvironment (TME) is critically dependent on the generation of accurate and comprehensive cellular and
intercellular networks. The goal of Project 1 is to develop a novel, integrated, and extensively validated
framework to model, manipulate, and dissect cell-cell signaling in the tumor microenvironment involving
extracellular ligand-receptor interactions coupled to intracellular signaling networks. Project 1 will build on the
methodologies and results generated during the previous CSBC funding period to address multiple challenges
by (a) expanding structure-informed prediction of protein-protein interactions (PPI) networks by leveraging novel
deep learning approaches, (b) improving signal transduction networks based on the analysis of time-dependent
drug perturbation assays, and (c) elucidating ligand/receptor-mediated paracrine interaction networks that
mediate recruitment—and possibly reprogramming—of healthy cells to the TME to create a pro-malignant
environment. To accomplish these goals, the focus will be on two highly aggressive tumors—colon
adenocarcinoma (COAD) and pancreatic ductal adenocarcinoma (PDAC)—for which data, models, reagents,
and analytical tools were generated during the prior funding cycle.
Project 1 is based on three specific aims. Through the integration of deep learning approaches to protein-protein
interactions and the creation of structure-based networks for the Hallmarks of Cancer, Aim 1 will provide a 3D-
structural context for the proposed work throughout Project 1. Aim 2 will define phosphoproteomics-based
intracellular signaling networks and describe their response to drug perturbations. Aim 3 will define paracrine-
based cell-cell signaling networks and validate them with a novel organs-on-a-chip platform.
The impact of Project 1 will derive largely from its innovative approaches, which include the use of structure-
based analyses to model protein interaction networks; the integration of structure-based modeling with deep
learning algorithms, including Protein Language Models, to provide models for essentially all interactions that
will be predicted and observed in the proposal; the inference of phosphoproteomics-based phosphoprotein
activity to provide critical time-dependent and perturbation-sensitive components of cellular signaling; the
incorporation of paracrine signaling; and novel experimental validation technologies including matched
phosphoproteomic and transcriptional profiles, and the bioengineering of tumors and normal cells within
interconnected micro-chambers to better recapitulate tissue physiology in vivo.
The major deliverable for Project 1 is an interrogable and holistic model for coupled intra- and inter-cellular
signaling which will serve as the foundation for the entire center by enabling the dissection of the mechanisms
contributing to the stability of tumor-related cell states, their ligand/receptor-mediated interaction with other
subpopulations in the TME, and their pharmacologically actionable molecular dependencies.
了解癌细胞自主行为和向肿瘤招募促恶性亚群
微环境(TME)关键取决于准确且全面的细胞和
项目 1 的目标是开发一种新颖的、集成的且经过广泛验证的网络。
模型、操纵和剖析肿瘤微环境中细胞信号传导的框架,涉及
细胞外配体-受体相互作用与细胞内信号网络的耦合将建立在
上一个 CSBC 资助期间产生的方法和结果,以应对多重挑战
(a) 利用新颖的方法扩展蛋白质-蛋白质相互作用 (PPI) 网络的结构信息预测
深度学习方法,(b) 基于时间依赖性分析改进信号转导网络
药物扰动测定,以及(c)阐明配体/受体介导的旁分泌相互作用网络
介导健康细胞向 TME 的招募(并可能重新编程),以产生促恶性细胞
为了实现这些目标,重点将放在两种高度侵袭性的肿瘤上——结肠癌。
腺癌 (COAD) 和胰腺导管腺癌 (PDAC)——其数据、模型、试剂、
分析工具是在上一个融资周期内产生的。
项目 1 基于三个具体目标:将深度学习方法整合到蛋白质之间。
相互作用以及为癌症标志创建基于结构的网络,目标 1 将提供 3D-
整个项目 1 中拟议工作的结构背景。目标 2 将定义基于磷酸化蛋白质组学的
细胞内信号网络并描述其对药物扰动的反应,目标 3 将定义旁分泌。
基于细胞间信号网络,并使用新型器官芯片平台对其进行验证。
项目 1 的影响将主要源自其创新方法,其中包括使用结构-
基于结构的建模与深度分析的结合;
学习算法,包括蛋白质语言模型,为基本上所有相互作用提供模型
将在提案中预测和观察基于磷酸化蛋白质组学的磷蛋白的推论;
提供细胞信号传导关键的时间依赖性和扰动敏感成分的活性;
结合旁分泌信号;以及新颖的实验验证技术,包括匹配
磷酸化蛋白质组学和转录谱,以及肿瘤和正常细胞的生物工程
互连的微室可以更好地重现体内组织生理学。
项目 1 的主要交付成果是一个可质疑的整体模型,用于耦合细胞内和细胞间
通过对机制进行剖析,信号将成为整个中心的基础
有助于肿瘤相关细胞状态的稳定性,它们的配体/受体介导的与其他细胞的相互作用
TME 中的亚群及其药理学上可行的分子依赖性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BARRY H HONIG其他文献
BARRY H HONIG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BARRY H HONIG', 18)}}的其他基金
Genome-wide structure-based analysis of protein-protein interactions and networks
基于全基因组结构的蛋白质-蛋白质相互作用和网络分析
- 批准号:
10320837 - 财政年份:2021
- 资助金额:
$ 58.09万 - 项目类别:
Genome-wide structure-based analysis of protein-protein interactions and networks
基于全基因组结构的蛋白质-蛋白质相互作用和网络分析
- 批准号:
10542796 - 财政年份:2021
- 资助金额:
$ 58.09万 - 项目类别:
Genome-wide structure-based analysis of protein-protein interactions and networks
基于全基因组结构的蛋白质-蛋白质相互作用和网络分析
- 批准号:
10809330 - 财政年份:2021
- 资助金额:
$ 58.09万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 58.09万 - 项目类别:
Bioethical, Legal, and Anthropological Study of Technologies (BLAST)
技术的生物伦理、法律和人类学研究 (BLAST)
- 批准号:
10831226 - 财政年份:2023
- 资助金额:
$ 58.09万 - 项目类别:
High-resolution cerebral microvascular imaging for characterizing vascular dysfunction in Alzheimer's disease mouse model
高分辨率脑微血管成像用于表征阿尔茨海默病小鼠模型的血管功能障碍
- 批准号:
10848559 - 财政年份:2023
- 资助金额:
$ 58.09万 - 项目类别:
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
- 批准号:
10727940 - 财政年份:2023
- 资助金额:
$ 58.09万 - 项目类别:
GPU-based SPECT Reconstruction Using Reverse Monte Carlo Simulations
使用反向蒙特卡罗模拟进行基于 GPU 的 SPECT 重建
- 批准号:
10740079 - 财政年份:2023
- 资助金额:
$ 58.09万 - 项目类别: