Structure-informed dissection of cancer-specific intracellular and paracrine networks
癌症特异性细胞内和旁分泌网络的结构知情解剖
基本信息
- 批准号:10729385
- 负责人:
- 金额:$ 58.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-19 至 2028-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAlgorithmsAutomobile DrivingBehaviorBindingBiological AssayBiomedical EngineeringCancer CenterCell LineCellsColon AdenocarcinomaColonic NeoplasmsCommunitiesComplexCoupledDataDependenceDevelopmentDissectionDrug resistanceEnvironmentFoundationsFundingGene Expression ProfileGenerationsGenetic TranscriptionGoalsHumanIndividualInvestigationKnowledgeLanguageLigandsMalignant - descriptorMalignant NeoplasmsMapsMediatingMethodologyModelingMolecularNatural Language ProcessingNatureNetwork-basedNormal CellOncoproteinsOrganPancreatic Ductal AdenocarcinomaParacrine CommunicationPeptidesPharmaceutical PreparationsPhenotypePhosphoproteinsPhysiologyPrintingProcessProteinsProteomePublicationsReagentResearchResearch PersonnelReverse engineeringScientistSignal TransductionStromal CellsStructureSystemTechniquesTechnologyTherapeuticTimeTissuesValidationWorkanalytical toolcancer cellclinically relevantdeep learningdeep learning algorithmdrug sensitivityextracellularimprovedin vivoindividual variationinnovationintercellular communicationmultiple omicsneoplastic cellnetwork modelsnovelorgan on a chipparacrinepharmacologicphosphoproteomicsprotein protein interactionprotein structurereceptorrecruitresponsesmall moleculesmall molecule inhibitortechnology validationtherapeutic targetthree dimensional structuretumortumor microenvironmenttumorigenic
项目摘要
Understanding cancer cell-autonomous behavior and recruitment of pro-malignant subpopulations to the tumor
microenvironment (TME) is critically dependent on the generation of accurate and comprehensive cellular and
intercellular networks. The goal of Project 1 is to develop a novel, integrated, and extensively validated
framework to model, manipulate, and dissect cell-cell signaling in the tumor microenvironment involving
extracellular ligand-receptor interactions coupled to intracellular signaling networks. Project 1 will build on the
methodologies and results generated during the previous CSBC funding period to address multiple challenges
by (a) expanding structure-informed prediction of protein-protein interactions (PPI) networks by leveraging novel
deep learning approaches, (b) improving signal transduction networks based on the analysis of time-dependent
drug perturbation assays, and (c) elucidating ligand/receptor-mediated paracrine interaction networks that
mediate recruitment—and possibly reprogramming—of healthy cells to the TME to create a pro-malignant
environment. To accomplish these goals, the focus will be on two highly aggressive tumors—colon
adenocarcinoma (COAD) and pancreatic ductal adenocarcinoma (PDAC)—for which data, models, reagents,
and analytical tools were generated during the prior funding cycle.
Project 1 is based on three specific aims. Through the integration of deep learning approaches to protein-protein
interactions and the creation of structure-based networks for the Hallmarks of Cancer, Aim 1 will provide a 3D-
structural context for the proposed work throughout Project 1. Aim 2 will define phosphoproteomics-based
intracellular signaling networks and describe their response to drug perturbations. Aim 3 will define paracrine-
based cell-cell signaling networks and validate them with a novel organs-on-a-chip platform.
The impact of Project 1 will derive largely from its innovative approaches, which include the use of structure-
based analyses to model protein interaction networks; the integration of structure-based modeling with deep
learning algorithms, including Protein Language Models, to provide models for essentially all interactions that
will be predicted and observed in the proposal; the inference of phosphoproteomics-based phosphoprotein
activity to provide critical time-dependent and perturbation-sensitive components of cellular signaling; the
incorporation of paracrine signaling; and novel experimental validation technologies including matched
phosphoproteomic and transcriptional profiles, and the bioengineering of tumors and normal cells within
interconnected micro-chambers to better recapitulate tissue physiology in vivo.
The major deliverable for Project 1 is an interrogable and holistic model for coupled intra- and inter-cellular
signaling which will serve as the foundation for the entire center by enabling the dissection of the mechanisms
contributing to the stability of tumor-related cell states, their ligand/receptor-mediated interaction with other
subpopulations in the TME, and their pharmacologically actionable molecular dependencies.
了解癌细胞自主行为并募集肿瘤的促主体亚群
微环境(TME)严重取决于准确和全面的细胞的产生
细胞间网络。项目1的目标是开发一种小说,整合和广泛验证
在肿瘤微环境中建模,操纵和解剖细胞细胞信号的框架,涉及
细胞外配体 - 受体相互作用与细胞内信号网络相连。项目1将建立在
在上一个CSBC资金期间生成的方法和结果解决了多种挑战
通过(a)通过利用新颖的蛋白质 - 蛋白质相互作用(PPI)网络扩展结构信息预测
深度学习方法,(b)基于时间依赖性的分析改善信号传输网络
药物扰动测定,(c)阐明配体/受体介导的旁分泌相互作用网络
调解健康细胞的招聘以及可能的重新编程,以创建促恶性
环境。为了实现这些目标,重点将放在两个高度侵略性的肿瘤上 - 颜色
腺癌(COAD)和胰腺导管腺癌(PDAC) - 对于哪些数据,模型,试剂,,
并在先前的资金周期中生成了分析工具。
项目1基于三个特定目标。通过整合深度学习方法的蛋白质蛋白质
AIM 1的相互作用和建立基于结构的网络,AIM 1将提供3D-
整个项目1的拟议工作的结构背景。AIM2将定义基于磷酸蛋白质组学
细胞内信号网络并描述它们对药物扰动的反应。 AIM 3将定义旁分线 -
基于细胞 - 细胞信号网络,并使用新型的芯片机器人平台对其进行验证。
项目1的影响将主要来自其创新方法,其中包括使用结构 -
基于建模蛋白质相互作用网络的分析;将基于结构的建模与深度集成
学习算法,包括蛋白质语言模型,为所有互动提供模型
该提案将被预测和观察;基于磷酸蛋白质组学的推断
提供关键的细胞信号传导时间依赖性和扰动敏感的成分;这
旁分泌信号传导的掺入;以及包括匹配的新型实验验证技术
磷酸化蛋白质组学和转录谱,以及肿瘤和正常细胞内的生物工程
相互连接的微室在体内更好地概括了组织生理。
项目1的主要可交付方式是耦合细胞内和细胞间的可询问和整体模型
通过启用机制的解剖来作为整个中心的信号传导
有助于肿瘤相关细胞态的稳定性,其配体/受体介导的相互作用与其他
TME中的亚群及其药物可操作的分子依赖性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BARRY H HONIG其他文献
BARRY H HONIG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BARRY H HONIG', 18)}}的其他基金
Genome-wide structure-based analysis of protein-protein interactions and networks
基于全基因组结构的蛋白质-蛋白质相互作用和网络分析
- 批准号:
10320837 - 财政年份:2021
- 资助金额:
$ 58.09万 - 项目类别:
Genome-wide structure-based analysis of protein-protein interactions and networks
基于全基因组结构的蛋白质-蛋白质相互作用和网络分析
- 批准号:
10542796 - 财政年份:2021
- 资助金额:
$ 58.09万 - 项目类别:
Genome-wide structure-based analysis of protein-protein interactions and networks
基于全基因组结构的蛋白质-蛋白质相互作用和网络分析
- 批准号:
10809330 - 财政年份:2021
- 资助金额:
$ 58.09万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 58.09万 - 项目类别:
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
- 批准号:
10727940 - 财政年份:2023
- 资助金额:
$ 58.09万 - 项目类别:
Computer-Aided Triage of Body CT Scans with Deep Learning
利用深度学习对身体 CT 扫描进行计算机辅助分类
- 批准号:
10585553 - 财政年份:2023
- 资助金额:
$ 58.09万 - 项目类别:
High-resolution cerebral microvascular imaging for characterizing vascular dysfunction in Alzheimer's disease mouse model
高分辨率脑微血管成像用于表征阿尔茨海默病小鼠模型的血管功能障碍
- 批准号:
10848559 - 财政年份:2023
- 资助金额:
$ 58.09万 - 项目类别:
Bioethical, Legal, and Anthropological Study of Technologies (BLAST)
技术的生物伦理、法律和人类学研究 (BLAST)
- 批准号:
10831226 - 财政年份:2023
- 资助金额:
$ 58.09万 - 项目类别: