Rhes-SUMO Pathway in Huntington disease
亨廷顿病中的 Rhes-SUMO 通路
基本信息
- 批准号:10785540
- 负责人:
- 金额:$ 6.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-21 至 2023-11-07
- 项目状态:已结题
- 来源:
- 关键词:ActinsAddressAgingAnimal DiseasesAnimal ModelAnimalsAreaAutophagocytosisAwardBehaviorBindingBrainCell CommunicationCell modelCellsCorpus striatum structureCultured CellsDRD2 geneDataDiseaseDisease ProgressionDisease modelDistantEtiologyFundingGenetic DiseasesGlutamineHomologous GeneHumanHuntington DiseaseHuntington geneIn VitroKnowledgeLinkMass Spectrum AnalysisMediatingMembraneMissionModificationMolecularMusNanotubesNeurogliaNeuronsPainParentsPathogenesisPathway interactionsPeripheralPhenotypePost-Translational Protein ProcessingProcessProteinsPublic HealthReporterResearchRoleRouteSUMO1 geneSignal TransductionSliceSpecificitySumoylation PathwayTestingTissuesToxic effectTransgenic AnimalsTransportationUbiquitinUnited States National Institutes of HealthViral VectorWorkcell typedisabilitydrug discoveryexpression vectorfarnesylationin vivoinhibition of autophagyinhibitorinsightlive cell imagingmutantnervous system disorderneuropathologynovelnovel therapeutic interventionpharmacologicpreventtransmission process
项目摘要
Project summary of the funded parent award
Huntington disease (HD) is a slowly progressing genetic disorder caused by an expansion of glutamine repeats
in the huntingtin protein (wtHTT), leading to mutant HTT (mHTT) that is widely expressed throughout the brain
and peripheral tissues. Despite this ubiquitous expression, mHTT shows regional effects by promoting
degeneration of medium spiny neurons (MSNs) in the striatum and loss of cortical mass. With aging, the effects
spread to other brain areas (1-5). The molecular basis for the regional specificity that encompasses many mHTT
processes is unclear; thus, etiology-based therapies for this devastating disease remain elusive. To fill this
knowledge gap, we will test the hypothesis that Ras-homolog enriched in the striatum (Rhes) and small
ubiquitin-like modifier (SUMO)-1 signaling circuitry orchestrate striatal vulnerability and HD progression.
This hypothesis is based on our prior finding that Rhes promotes SUMO-1 modification of mHTT (SUMO1–
mHTT) and enhances soluble forms SUMO1–mHTT, leading to toxicity in cell and transgenic animal models of
HD (6-14). However, the downstream mechanisms of the Rhes–SUMO1–mHTT pathway in HD remain obscure.
Serendipitously, we found that Rhes promotes the formation of actin-containing membrane protrusions
known as tunneling nanotubes (TNTs) and that Rhes is transported through TNTs to distant cells (15). Rhes also
transports mHTT, but not wtHTT, via the TNTs that form between cultured cells. This intercellular transport
requires post-translational modifications (PTMs), such as the farnesylation of Rhes and SUMOylation of mHTT,
revealing a new role for the Rhes–SUMO1 pathway in mHTT transmission (15). We now demonstrate that Rhes
can move between MSNs and spread mHTT in vivo. We tested using cell-type specific reporter mice, Flex (“Cre-
On”) and bicistronic viral vectors, and organotypic brain slices and found that Rhes moves from D1R-MSNs to
D2R-MSNs and potentiates mHTT spread from the striatum to the cortex in the brain (16). These results indicate
that Rhes is a major driver of mHTT transport, both in vitro and in vivo. We also found that SUMO1 deletion
diminishes mHTT protein levels and prevents the HD-like phenotype by upregulating autophagic activity in
animal (Q175DN) and cellular HD models (17). Taken together, these new results indicate that the Rhes-
SUMO1 pathway alters mHTT levels and promotes mHTT spread in the brain. However, the mechanisms
of mHTT spread remain unknown. Therefore, uncovering the mechanisms that enable Rhes to spread mHTT
and the in vivo neuropathological role of spread remain essential areas to address. Our preliminary data suggest
that SUMO1 regulates striatal mTORC1 signaling, a major regulator of autophagy, in Q175DN mice. Defining
whether or how SUMO1 contributes to mHTT spread in vivo and its role autophagy dysregulation is therefore
critical both for modeling the disease progression and for drug discovery. Our specific aims in this project are:
Aim 1. To uncover the role and mechanisms of Rhes-mediated mHTT spreading in the brain. We
found that Rhes moves and spreads mHTT between neurons in vivo. We hypothesize that Rhes spreads mHTT
and promotes neuropathology involving PTM mechanisms and TNT-like routes. We will employ bicistronic and
Cre-On PTM defective mHTT and Rhes expression vectors to investigate mHTT spreading, HD-like behavior,
and neuropathology in vivo. We will use MSNs and glial reporter mice to determine if Rhes can transport mHTT
from MSNs to the cortex and from MSNs to the glia in the brain. We will use live-cell imaging and organotypic
brain slices to establish whether Rhes transportation of mHTT involves TNT-like protrusions ex vivo. These
results will uncover novel mechanisms and the role of Rhes-mediated mHTT spread in the brain.
Aim 2. To identify the mechanisms of SUMO1-mediated HD pathogenesis. We found that SUMO1
depletion upregulates autophagy, decreases mHTT levels, and prevents HD-like deficits in Q175DN mice. We
showed that SUMO1 and mHTT enhance striatal mTORC1 signaling, a known inhibitor of autophagy. Thus, we
hypothesize that SUMO1–mHTT inhibits autophagy, thereby allowing accumulation and spread of mHTT from
the striatum to the cortex. We will first characterize the SUMO1 role in autophagy flux in cultured cells and HD
animals using autophagy reporters. We will then use Cre-On mHTT reporters and WT;Rgs9Cre and SUMO1-
KO;Rgs9Cre mice and pharmacological mTORC1 inhibition to corroborate a role for SUMO1 and autophagy
signaling in mHTT spread from MSNs to the cortex. Finally, using a mass spectrometry approach, we will identify
SUMO1-dependent mHTT binding partners to further unravel SUMO/autophagy regulators in the striatum.
Collectively, this study will delineate the mechanisms of the Rhes–SUMO1 pathway in mHTT spread. It
will identify the molecular link between autophagy dysregulation and mHTT spread for potential targeting in HD
therapy.
资助家长奖项目概要
亨廷顿病 (HD) 是一种缓慢进展的遗传性疾病,由谷氨酰胺重复序列扩展引起
存在于亨廷顿蛋白 (wtHTT) 中,导致突变 HTT (mHTT) 在整个大脑中广泛表达
尽管这种表达无处不在,mHTT 通过促进区域效应。
随着年龄的增长,纹状体中多棘神经元(MSN)的退化和皮质质量的损失。
扩散到其他大脑区域 (1-5) 的区域特异性的分子基础,涵盖许多 mHTT。
其过程尚不清楚;因此,针对这种破坏性疾病的基于病因的治疗方法仍然难以实现。
知识差距,我们将检验 Ras 同源物在纹状体 (Rhes) 中富集且较小的假设
泛素样修饰剂 (SUMO)-1 信号电路协调纹状体脆弱性和 HD 进展。
这一假设基于我们之前的发现,即 Rhes 促进 mHTT 的 SUMO-1 修饰(SUMO1-
mHTT)并增强可溶形式 SUMO1–mHTT,导致细胞和转基因动物模型中的毒性
HD (6-14) 然而,HD 中 Rhes-SUMO1-mHTT 通路的下游机制仍不清楚。
偶然地,我们发现Rhes促进了含肌动蛋白的膜突起的形成
称为隧道纳米管 (TNT),Rhes 也通过 TNT 运输到远处的细胞 (15)。
通过培养细胞之间形成的 TNT 转运 mHTT,但不转运 wtHTT。
需要翻译后修饰(PTM),例如Rhes的法尼基化和mHTT的SUMO化,
揭示了 Rhes-SUMO1 通路在 mHTT 传输中的新作用 (15)。
我们使用细胞类型特异性报告小鼠 Flex(“Cre-”)在 MSN 之间移动并在体内传播 mHTT。
On”)和双顺反子病毒载体,以及器官型脑切片,发现Rhes从D1R-MSNs转移到
D2R-MSN 并增强 mHTT 从纹状体到大脑皮层的传播 (16)。
在体外和体内,Rhes 都是 mHTT 转运的主要驱动因素。我们还发现 SUMO1 缺失。
通过上调自噬活性降低 mHTT 蛋白水平并预防 HD 样表型
总而言之,这些新结果表明Rhes-动物(Q175DN)和细胞HD模型(17)。
SUMO1 通路改变 mHTT 水平并促进 mHTT 在大脑中的传播,但其机制尚不清楚。
mHTT 传播的机制仍然未知,因此,揭示 Rhes 传播 mHTT 的机制。
我们的初步数据表明,传播的体内神经病理学作用仍然是需要解决的重要领域。
SUMO1 调节纹状体 mTORC1 信号传导,这是 Q175DN 小鼠中自噬的主要调节因子。
SUMO1 是否或如何促进 mHTT 在体内的传播及其在自噬失调中的作用
对于疾病进展建模和药物发现都至关重要,我们在该项目中的具体目标是:
目的 1. 揭示 Rhes 介导的 mHTT 在大脑中传播的作用和机制。
发现 Rhes 在体内神经元之间移动和传播 mHTT 我们捕获了 Rhes 传播 mHTT。
并促进涉及 PTM 机制和 TNT 样途径的神经病理学。我们将采用双顺反子和
Cre-On PTM 缺陷 mHTT 和 Rhes 表达载体,用于研究 mHTT 传播、HD 样行为、
我们将使用 MSN 和神经胶质报告小鼠来确定 Rhes 是否可以转运 mHTT。
从 MSN 到皮质,从 MSN 到大脑中的神经胶质细胞,我们将使用活细胞成像和器官型。
脑切片以确定 mHTT 的 Rhes 运输是否涉及离体 TNT 样突起。
结果将揭示 Rhes 介导的 mHTT 在大脑中传播的新机制和作用。
目的 2. 确定 SUMO1 介导的 HD 发病机制。
耗竭可上调 Q175DN 小鼠的自噬、降低 mHTT 水平并预防 HD 样缺陷。
结果表明 SUMO1 和 mHTT 增强纹状体 mTORC1 信号传导,这是一种已知的自噬抑制剂。
SUMO1–mHTT 抑制自噬,允许 mHTT 积累并由此扩散
我们将首先描述 SUMO1 在培养细胞和 HD 中自噬流中的作用。
然后我们将使用 Cre-On mHTT 生产者和 WT;Rgs9Cre 和 SUMO1- 的动物。
KO;Rgs9Cre 小鼠和药理学 mTORC1 抑制证实了 SUMO1 和自噬的作用
最后,我们将使用质谱方法来识别 mHTT 中的信号从 MSN 传播到皮层的情况。
SUMO1 依赖性 mHTT 结合伙伴进一步揭示纹状体中的 SUMO/自噬调节因子。
总的来说,这项研究将描述 Rhes-SUMO1 通路在 mHTT 传播中的机制。
将确定自噬失调和 mHTT 传播之间的分子联系,以用于 HD 的潜在靶向
治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Srinivasa Subramaniam其他文献
Srinivasa Subramaniam的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Srinivasa Subramaniam', 18)}}的其他基金
Validating cGAS-STING pathway as drug target in Huntington disease mouse model
在亨廷顿病小鼠模型中验证 cGAS-STING 通路作为药物靶点
- 批准号:
10508092 - 财政年份:2022
- 资助金额:
$ 6.92万 - 项目类别:
mTOR Signaling in Striatum: Regulation and Function
纹状体中的 mTOR 信号传导:调节和功能
- 批准号:
9174387 - 财政年份:2016
- 资助金额:
$ 6.92万 - 项目类别:
Rhes-SUMO circuitry in Huntington's Disease Pathogenesis
亨廷顿病发病机制中的 Rhes-SUMO 电路
- 批准号:
9006888 - 财政年份:2016
- 资助金额:
$ 6.92万 - 项目类别:
mTOR Signaling in Striatum: Regulation and Function
纹状体中的 mTOR 信号传导:调节和功能
- 批准号:
9282509 - 财政年份:2015
- 资助金额:
$ 6.92万 - 项目类别:
mTOR Signaling in Striatum: Regulation and Function
纹状体中的 mTOR 信号传导:调节和功能
- 批准号:
8883032 - 财政年份:2015
- 资助金额:
$ 6.92万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Volumetric analysis of epithelial morphogenesis with high spatiotemporal resolution
高时空分辨率上皮形态发生的体积分析
- 批准号:
10586534 - 财政年份:2023
- 资助金额:
$ 6.92万 - 项目类别:
Protein modification and the aging phenotype of human skeletal muscle
蛋白质修饰与人类骨骼肌的衰老表型
- 批准号:
10593791 - 财政年份:2023
- 资助金额:
$ 6.92万 - 项目类别:
Molecular Tool Development to Identify, Isolate, and Interrogate the Rod Microglia Phenotype in Neurological Disease and Injury
开发分子工具来识别、分离和询问神经系统疾病和损伤中的杆状小胶质细胞表型
- 批准号:
10599762 - 财政年份:2023
- 资助金额:
$ 6.92万 - 项目类别:
Molecular and Cell Biological Foundations of Proteostress-Induced Neuronal Extrusion
蛋白质应激诱导的神经元挤压的分子和细胞生物学基础
- 批准号:
10753902 - 财政年份:2023
- 资助金额:
$ 6.92万 - 项目类别: