Endothelial Piezo1 channel and cerebral blood flow control
内皮Piezo1通道与脑血流控制
基本信息
- 批准号:10719633
- 负责人:
- 金额:$ 59.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2028-06-30
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAddressAffectAfrican American populationAngiotensin IIAnimalsBlood VesselsBlood capillariesBlood flowBrainBrain regionCapillary Endothelial CellCardiovascular DiseasesCationsCellsCerebrovascular CirculationCerebrovascular systemCharacteristicsChronicCoupledCuesDataDecelerationDiseaseElectrophysiology (science)Endothelial CellsEndotheliumEngineeringFeedbackFoundationsFrictionFutureGeneticGenetic EngineeringGenetically Engineered MouseGoalsHealthHigh PrevalenceHumanHyperemiaHypertensionImageInteroceptionKineticsKnock-outKnockout MiceLaser-Doppler FlowmetryLasersLearningMeasurementMeasuresMechanicsMediatingMembrane PotentialsMemoryMetabolicMonitorMusMutationNeuronsNitric OxideOutcomePeripheralPiezo 1 ion channelPopulationPositioning AttributeProbabilityProductionProteinsRegional Blood FlowRegulationRelaxationReportingResearchRisk FactorsShapesSignal TransductionStimulusSystemTestingTransgenic MiceTranslatingUnited States National Institutes of HealthVasodilator AgentsVibrissaeWorkarteriolebehavior testblood pressure regulationbrain endothelial cellbrain healthcerebral capillarycerebrovascularclinically relevantdruggable targetexperiencefluorescence imaginggain of functiongain of function mutationhemodynamicshypertensiveimprovedin vivointerestmechanical drivemechanical forcemechanical stimulusmouse modelneuralneurotransmissionneurovascular couplingnew therapeutic targetnovelpharmacologicpreventresponseshear stressspatiotemporaltime usetwo photon microscopytwo-photon
项目摘要
Project Summary/Abstract:
Cerebral blood flow (CBF) is precisely controlled to satisfy neuronal metabolic demands. Active neurons signal
to the vasculature via multiple neurovascular coupling mechanisms to increase regional blood flow in a
phenomenon known as functional hyperemia (FH). The hyperemic response increases the frictional forces
imposed by blood flow onto endothelial cells (ECs) of arterioles and capillaries. We have recently demonstrated
that the Piezo1 channel is a crucial mechanosensor in brain capillary ECs, and that it mediates Ca2+ signals in
response to mechanical stimuli. However, the impact of Piezo1 signaling on CBF control remains unknown. In
response to the NIH Notice of Special Interest (NOT-AT-21-002) “Promoting Research on Interoception and Its
Impact on Health and Disease,” we provide compelling preliminary evidence that Piezo1-mediated interoception
is crucial in CBF regulation, and that this mechanism is compromised during hypertension. Building on our
preliminary data, we aim to test the overarching hypothesis that cerebrovascular Piezo1 regulates CBF at the
local capillary level and at the large-scale level in extended brain regions. Aim 1 will employ EC-specific
genetically encoded Ca2+ indicator mice, widefield and two-photon fluorescence imaging to determine the spatial,
temporal, and spread characteristics of Piezo1-mediated Ca2+ transients in brain capillaries. Moreover, we will
use genetic and pharmacological approaches to determine if Ca2+ signaling mediated by Piezo1 is coupled to
the production of the potent vasodilator nitric oxide to increase local capillary blood flow. In Aim 2, we will
determine how large-scale Piezo1 activation during FH triggers a cationic conductance, which dampens
hyperpolarization-mediated FH, much like a built-in brake system. To achieve this goal, we will use genetically
engineered mice with reduced Piezo1 activity in all ECs or brain ECs, along with near infrared laser imaging,
and laser doppler flowmetry. In Aim 3, we will determine if cerebrovascular Piezo1 signaling is compromised in
hypertension and whether a Piezo1 channelopathy-like effect leads ultimately to CBF deficits. We will directly
measure Piezo1 channel activity and CBF in two mouse models of hypertension and in genetically engineered
transgenic mice that harbor a human Piezo1 mutation. Use of this mutation is clinically relevant, in that PIEZO1
mutations are prevalent in African Americans, a population with the highest prevalence of hypertension
worldwide. Completion of this project will support the concept that Piezo1 is crucial in CBF regulation, and that
alteration of its activity is a novel risk factor for CBF decline. This work will further provide new therapeutic targets
for improving CBF in cardiovascular disease.
项目摘要/摘要:
精确控制脑血流量(CBF)以满足神经元信号的活跃代谢需求。
通过多种神经血管耦合机制进入脉管系统,以增加局部血流量
称为功能性充血(FH)的现象。充血反应会增加摩擦力。
我们最近证明了血流对小动脉和毛细血管内皮细胞(EC)的影响。
Piezo1 通道是脑毛细血管内皮细胞中至关重要的机械传感器,并且它介导 Ca2+ 信号
然而,Piezo1 信号对 CBF 控制的影响仍然未知。
对 NIH 特别关注通知 (NOT-AT-21-002)“促进内感受及其研究”的回应
对健康和疾病的影响”,我们提供了令人信服的初步证据,证明 Piezo1 介导的内感受
在 CBF 调节中至关重要,并且这种机制在高血压期间会受到损害。
初步数据,我们的目的是测试脑血管 Piezo1 调节 CBF 的总体假设
目标 1 将采用特定于 EC 的局部毛细血管水平和扩展大脑区域的大规模水平。
基因编码的 Ca2+ 指示小鼠,宽场和双光子荧光成像以确定空间,
此外,我们还将研究 Piezo1 介导的 Ca2+ 瞬变在脑毛细血管中的时间和传播特征。
使用遗传和药理学方法来确定 Piezo1 介导的 Ca2+ 信号是否与
产生强效血管扩张剂一氧化氮以增加局部毛细血管血流量 在目标 2 中,我们将
确定 FH 期间大规模 Piezo1 激活如何触发阳离子电导,从而抑制
超极化介导的 FH,很像内置制动系统 为了实现这一目标,我们将使用基因。
工程小鼠的所有 EC 或大脑 EC 中的 Piezo1 活性均降低,并进行近红外激光成像,
在目标 3 中,我们将确定脑血管 Piezo1 信号传导是否受到损害。
高血压以及 Piezo1 通道病样效应是否最终导致 CBF 缺陷我们将直接进行。
测量两种高血压小鼠模型和基因工程小鼠中的 Piezo1 通道活性和 CBF
携带人类 Piezo1 突变的转基因小鼠,该突变的使用具有临床意义,即 PIEZO1。
突变在非裔美国人中普遍存在,这是高血压患病率最高的人群
该项目的完成将支持 Piezo1 在 CBF 监管中至关重要的概念。
其活性的改变是 CBF 下降的一个新的危险因素,这项工作将进一步提供新的治疗靶点。
改善心血管疾病的 CBF。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Osama F Harraz其他文献
Osama F Harraz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Osama F Harraz', 18)}}的其他基金
Brain Capillary Mechanosensation by Piezo1 Channels in Health and Disease
Piezo1 通道在健康和疾病中的脑毛细血管机械感觉
- 批准号:
10447833 - 财政年份:2020
- 资助金额:
$ 59.32万 - 项目类别:
Brain Capillary Mechanosensation by Piezo1 Channels in Health and Disease
Piezo1 通道在健康和疾病中的脑毛细血管机械感觉
- 批准号:
10308806 - 财政年份:2020
- 资助金额:
$ 59.32万 - 项目类别:
Brain Capillary Mechanosensation by Piezo1 Channels in Health and Disease
Piezo1 通道在健康和疾病中的脑毛细血管机械感觉
- 批准号:
10311469 - 财政年份:2020
- 资助金额:
$ 59.32万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 59.32万 - 项目类别:
MAIT cells in lupus skin disease and photosensitivity
MAIT 细胞在狼疮皮肤病和光敏性中的作用
- 批准号:
10556664 - 财政年份:2023
- 资助金额:
$ 59.32万 - 项目类别:
Effects of Aging on Neuronal Lysosomal Damage Responses Driven by CMT2B-linked Rab7
衰老对 CMT2B 相关 Rab7 驱动的神经元溶酶体损伤反应的影响
- 批准号:
10678789 - 财政年份:2023
- 资助金额:
$ 59.32万 - 项目类别:
The role of core circadian regulator Bmal1 in axonal regeneration and nerve repair
核心昼夜节律调节因子 Bmal1 在轴突再生和神经修复中的作用
- 批准号:
10677932 - 财政年份:2023
- 资助金额:
$ 59.32万 - 项目类别:
Translational Research and Implementation Science for Nurses (TRAIN) Program 2.0
护士转化研究和实施科学 (TRAIN) 计划 2.0
- 批准号:
10680769 - 财政年份:2023
- 资助金额:
$ 59.32万 - 项目类别: