From Variants to Mechanisms for Cardiac Arrhythmias
从心律失常的变异到机制
基本信息
- 批准号:10719850
- 负责人:
- 金额:$ 82.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2028-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAmericanAnatomyArchitectureAreaArrhythmiaAtrial FibrillationBiological AssayBiologyCRISPR/Cas technologyCalciumCandidate Disease GeneCardiacCardiac MyocytesCardiologyCell modelCell physiologyChromatinChromatin LoopClinicalClustered Regularly Interspaced Short Palindromic RepeatsCodeCompanionsComplementDataDiagnosticDiseaseElectrophysiology (science)EnhancersEventFollow-Up StudiesGene ExpressionGene ProteinsGene TargetingGenesGeneticGenetic RiskGenetic TranscriptionGenomicsGenotypeGoalsHeartHeart AtriumHeritabilityHi-CHumanIndividualKnowledgeLateralLeftLinkLocationMapsMeasurementMeasuresMembrane PotentialsMetadataModelingMolecular ConformationNaturePathologyPathway interactionsPhysical assessmentPhysiologyPositioning AttributeProteinsPublishingQuality of lifeQuantitative Trait LociRegulator GenesRegulatory ElementRepressionResolutionRetrospective cohortRiskSamplingSystemTechnologyTherapeuticTimeTissue SampleTissuesTranscriptional RegulationTranslational ResearchValidationVariantZFHX3 genebiobankcandidate identificationcell typeclinical practicecohortdetection limitdisorder riskevidence baseexpectationexperiencefollow-upgenetic associationgenetic variantgenome wide association studygenome-wide analysisgenomic locushuman stem cellshuman tissueimprovedmortality risknovel therapeutic interventionnovel therapeuticspower analysispromoterprospectiverisk variantsingle nucleus RNA-sequencingsuccesstherapeutic developmenttraittranscription factortranscriptome sequencingtranslational potentialtranslational therapeuticsvirtualwhole genome
项目摘要
Project summary
There are hundreds of genomic loci where common genetic variants associate with the risk of cardiac
arrhythmias, yet the slow rate of functional assessment severely limits our ability to unlock the unique biology
that they identify. Our long-term goal is to systematically link arrhythmia risk loci to their mechanisms, identifying
the unexpected mechanisms of arrhythmogenesis, and priming them for therapeutic translation. The key feature
of arrhythmia genetic association loci is their non-protein-coding nature, a finding which leads to our overarching
hypothesis that transcriptional misregulation underlies much of cardiac arrhythmia risk. To address this
hypothesis, we first examine the relationships between known arrhythmia target genes which encode
transcription factors and cardiomyocyte electrophysiology using inducible CRISPR-Cas9 modifiers of gene
expression. We will seek to understand the transcriptional changes underlying electrophysiological changes by
profiling gene expression and protein abundance. At the same time, we recognize that the vast majority of loci
remain entirely undefined, a limitation which serves as a great impediment to further translational research. To
address this, we will use two orthogonal approaches in human atrial tissue samples. First, our group has led
early large-scale implementations of single nucleus RNA sequencing on the human heart, experience which we
propose to extend to the goals of this proposal. We aim to link genotype to expression by performing single
nucleus RNA sequencing on a large biobank of non-diseased left atrial tissue with available genotypes and
clinical metadata. This will provide not only the target gene(s) for the association loci, but also the directionality
of effect and the pertinent cell type(s), greatly facilitating downstream validation by our team and others. To
complement the direct measurement of genotype to expression, we aim to supplement these analyses with
chromatin conformation analysis. While these assays do not resolve the effects of genotype, they measure
contact between regions of risk and target promoters to provide putative gene targets. Our preliminary high-
resolution contact map from the left atrial lateral wall greatly improved the number of candidate genes for atrial
fibrillation association loci. We recognize the importance of anatomically restricted events in the initiation and
propagation of arrhythmias, and thus propose to assess the physical proximity between regulatory elements
within association loci and their putative gene targets in prospectively sampled atrial tissues using micro-C, a
technology which assesses chromatin conformation across the entire genome. Ultimately, accomplishing these
aims could prove transformative for facilitating studies of cardiac arrhythmias, unlocking the mechanisms of
arrhythmia genetic risk to generate novel therapeutic approaches and guide clinical practices.
项目概要
有数百个基因组位点,其中常见的遗传变异与心脏病风险相关。
心律失常,但功能评估的缓慢速度严重限制了我们解锁独特生物学的能力
他们所识别的。我们的长期目标是系统地将心律失常风险位点与其机制联系起来,识别
心律失常发生的意想不到的机制,并为治疗转化做好准备。关键特点
心律失常遗传关联位点的一个重要原因是它们的非蛋白质编码性质,这一发现导致我们的总体研究
假设转录失调是导致心律失常风险的主要原因。为了解决这个问题
假设,我们首先检查编码已知心律失常靶基因之间的关系
使用基因的诱导型 CRISPR-Cas9 修饰剂研究转录因子和心肌细胞电生理学
表达。我们将通过以下方式寻求了解电生理变化背后的转录变化
分析基因表达和蛋白质丰度。同时,我们认识到绝大多数基因座
仍然完全未定义,这一限制成为进一步转化研究的巨大障碍。到
为了解决这个问题,我们将在人类心房组织样本中使用两种正交方法。首先,我们组带头
早期在人类心脏上大规模实施单核 RNA 测序,我们的经验
建议扩展至本提案的目标。我们的目标是通过执行单一的操作将基因型与表达联系起来
对具有可用基因型的大型非患病左心房组织生物库进行核 RNA 测序,
临床元数据。这不仅会提供关联位点的目标基因,还会提供方向性
效果和相关细胞类型,极大地促进了我们团队和其他人的下游验证。到
补充基因型到表达的直接测量,我们的目标是补充这些分析
染色质构象分析。虽然这些测定不能解决基因型的影响,但它们测量
风险区域和目标启动子之间的联系以提供假定的基因目标。我们的初步高
左心房侧壁的分辨率接触图大大提高了心房候选基因的数量
颤动关联位点。我们认识到解剖学限制事件在启动和
心律失常的传播,因此建议评估调节元件之间的物理接近度
在使用 micro-C 前瞻性采样心房组织中的关联位点及其假定基因靶标内,
评估整个基因组染色质构象的技术。最终实现这些
目标可能会被证明具有变革性,可促进心律失常的研究,解锁心律失常的机制
心律失常遗传风险产生新的治疗方法并指导临床实践。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nathan Tucker其他文献
Nathan Tucker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nathan Tucker', 18)}}的其他基金
Defining the functional variation underlying atrial fibrillation risk
定义心房颤动风险背后的功能变异
- 批准号:
10421043 - 财政年份:2018
- 资助金额:
$ 82.56万 - 项目类别:
Defining the functional variation underlying atrial fibrillation risk
定义心房颤动风险的功能变异
- 批准号:
9930154 - 财政年份:2018
- 资助金额:
$ 82.56万 - 项目类别:
Defining the functional variation underlying atrial fibrillation risk
定义心房颤动风险背后的功能变异
- 批准号:
10115201 - 财政年份:2018
- 资助金额:
$ 82.56万 - 项目类别:
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 82.56万 - 项目类别:
Preservation of brain NAD+ as a novel non-amyloid based therapeutic strategy for Alzheimer’s disease
保留大脑 NAD 作为阿尔茨海默病的一种新型非淀粉样蛋白治疗策略
- 批准号:
10588414 - 财政年份:2023
- 资助金额:
$ 82.56万 - 项目类别:
Fecal Microbiota Transfer Attenuates Aged Gut Dysbiosis and Functional Deficits after Traumatic Brain Injury
粪便微生物群转移可减轻老年肠道菌群失调和脑外伤后的功能缺陷
- 批准号:
10573109 - 财政年份:2023
- 资助金额:
$ 82.56万 - 项目类别:
The Role of Viral Exposure and Age in Alzheimer's Disease Progression
病毒暴露和年龄在阿尔茨海默病进展中的作用
- 批准号:
10717223 - 财政年份:2023
- 资助金额:
$ 82.56万 - 项目类别:
Designing novel therapeutics for Alzheimer’s disease using structural studies of tau
利用 tau 蛋白结构研究设计治疗阿尔茨海默病的新疗法
- 批准号:
10678341 - 财政年份:2023
- 资助金额:
$ 82.56万 - 项目类别: