A genetic model for metazoan programmed DNA elimination
后生动物程序性 DNA 消除的遗传模型
基本信息
- 批准号:10719260
- 负责人:
- 金额:$ 29.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2027-04-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAnimalsBiochemistryBioinformaticsBiologicalBiological ProcessBiologyCaenorhabditis elegansCellsChIP-seqChromosomesClustered Regularly Interspaced Short Palindromic RepeatsConserved SequenceCytologyDNADNA Transposable ElementsDataDevelopmentDiseaseEnsureEvolutionExcisionFamilyGene Expression ProfileGenesGeneticGenetic ModelsGenetic TranscriptionGenetic VariationGenomeGenome StabilityGenomicsHistonesIn VitroLifeLife Cycle StagesLocationLongevityMaintenanceModelingMolecularMutationNematodaOrganismPhenotypePhylogenetic AnalysisPlantsPopulationPositioning AttributeProcessProteinsRNA InterferenceRepetitive SequenceReproducibilityReproductionRoleSiteSmall RNASomatic CellUntranslated RNAVariantWorkblastomere structurechromosomal locationcomparative genomicsembryo cellflexibilitygenetic manipulationgenome analysisgenome integritygenome sequencinggenome-widegenomic locushealinginsightmembermutanttelomeretooltranscriptome sequencing
项目摘要
Project Summary/Abstract
Genome integrity is essential to life. Considerable efforts are made to maintain the stability of genomes. Yet
genomes also undergo constant changes, often random and small in scale, providing mechanisms for evolution
and adaptation. In contrast, programmed DNA elimination is a dramatic form of genome change with large
amounts of DNA, ranging from 0.5 to 95% of the genome, eliminated during development. DNA elimination is
highly selective and reproducible and is an integral part of biology for diverse organisms, including single-cell
ciliates, a variety of multicellular organisms across animal phyla and some plants. The broad phylogenetic
distribution suggests DNA elimination has evolved independently and has important biological functions. A
common theme for metazoan DNA elimination is the removal of both germline-expressed genes and repetitive
sequences. This suggests that a possible function of DNA elimination in metazoa is to permanently silence
certain germline sequences potentially harmful to somatic cells. Despite progress in genomics and cytology,
functional and mechanistic studies of metazoan DNA elimination are limited, largely due to the lack of genetic
and functional tools. Recently, we built upon and extended a genomic observation and established a genetic and
functional model for DNA elimination in the free-living nematode Oscheius tipulae, a member of the Rhabditidae
family, which includes Caenorhabditis elegans. We show that DNA elimination in O. tipulae occurs during 8-16
cell embryos. We identified and characterized a conserved sequence (Sequence For Elimination, SFE) motif
associated with the DNA break sites and demonstrated its direct role in DNA elimination. DNA breaks occur
within the motif, followed by end resection and telomere healing. Additional breaks occur simultaneously in the
eliminated DNA, perhaps serving as a fail-safe mechanism for DNA elimination. We revealed the abundance
and variations of this motif in many wild isolates of O. tipulae from around the world. In this proposal, we will (1)
study the functions of DNA elimination in O. tipulae by characterizing the fail-to-eliminate phenotypes from
CRISPR edited SFE mutants. We will use RNA-seq, ChIP-seq and small RNA sequencing to determine the
changes of RNA expression and silencing mechanisms in these mutants. We will also (2) study the molecular
mechanisms of O. tipulae DNA elimination by investigating the sequence and genomic position required for SFEs
using CRISPR, as well as proteins that interact with SFEs using in vitro biochemistry, bioinformatic predictions,
and genetics. We will further (3) study the variations of DNA elimination by building telomere-to-telomere
genomes for divergent strains of O. tipulae, identifying SFEs, and carrying out comparative genomics. Overall,
this proposal will use our established genetic model in the free-living nematode O. tipulae to examine the
functions, mechanisms, and variations of DNA elimination. This work will reveal insights into the molecular details
of DNA elimination in a metazoan.
项目摘要/摘要
基因组完整性对生命至关重要。为维持基因组的稳定而做出了巨大的努力。然而
基因组也经历恒定变化,通常是随机的,规模较小,提供了进化的机制
和适应。相反,编程的DNA消除是一种戏剧性的基因组变化形式,
在发育过程中消除的DNA量,范围为0.5%至95%。 DNA消除是
高度选择性和可重现,是不同生物的生物学不可或缺的一部分,包括单细胞
纤毛,跨动物门和某些植物的多种多细胞生物。广泛的系统发育
分布表明,消除DNA已独立发展,并且具有重要的生物学功能。一个
消除后生DNA的共同主题是消除种系表达基因和重复性
序列。这表明后生动物中消除DNA的可能功能是永久静音
某些种系序列可能对体细胞有害。尽管基因组学和细胞学进展,但
后生DNA消除的功能和机械研究受到限制,这主要是由于缺乏遗传
和功能工具。最近,我们建立并扩展了基因组观察,建立了遗传和
自由生存线虫Oscheius Tipulae中消除DNA的功能模型,br鼠的成员
家庭,包括秀丽隐杆线虫。我们表明O. tipulae中消除DNA是在8-16期间发生的
细胞胚胎。我们确定并表征了一个保守的序列(消除序列,SFE)基序
与DNA断裂位点相关,并证明了其在DNA消除中的直接作用。发生DNA断裂
在主题中,然后进行最终切除和端粒愈合。同时发生的其他休息
消除了DNA,也许是消除DNA的故障安全机制。我们透露了丰富的
和这种图案的变化在世界各地的许多O. tipulae的野生分离株中。在此提案中,我们将(1)
通过表征来自O. tipulae中DNA消除的功能,通过表征来自失败的脱位表型
CRISPR编辑了SFE突变体。我们将使用RNA-seq,chip-seq和小RNA测序来确定
这些突变体中RNA表达和沉默机制的变化。我们还将(2)研究分子
通过研究SFE所需的序列和基因组位置O. tipulae DNA消除的机制
使用CRISPR以及使用体外生物化学与SFE相互作用的蛋白质,生物信息学预测,
和遗传学。我们将进一步(3)通过构建端粒到凝结物来研究消除DNA的变化
O. tipulae菌株,鉴定SFE和进行比较基因组学的基因组。全面的,
该建议将在自由生命的线虫O中使用我们既定的遗传模型。
DNA消除的功能,机制和变化。这项工作将揭示有关分子细节的见解
在一代中消除DNA。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jianbin Wang其他文献
Jianbin Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jianbin Wang', 18)}}的其他基金
Programmed DNA Elimination in Parasitic Nematodes
寄生线虫中的程序性 DNA 消除
- 批准号:
10682424 - 财政年份:2020
- 资助金额:
$ 29.91万 - 项目类别:
Programmed DNA Elimination in Parasitic Nematodes
寄生线虫中的程序性 DNA 消除
- 批准号:
10269025 - 财政年份:2020
- 资助金额:
$ 29.91万 - 项目类别:
Programmed DNA Elimination in Parasitic Nematodes
寄生线虫中的程序性 DNA 消除
- 批准号:
10096357 - 财政年份:2020
- 资助金额:
$ 29.91万 - 项目类别:
相似国自然基金
基于供应链视角的动物源性食品中抗微生物药物耐药性传导机制及监管策略研究
- 批准号:72303209
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
热带森林土壤氮添加下微节肢动物对氮转化过程的调控
- 批准号:32360323
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
Slc39a13在哺乳动物铁代谢中的作用
- 批准号:32371226
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
乳酸介导的组蛋白乳酸化调控哺乳动物主要合子基因组激活的机制研究
- 批准号:82301880
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
早期环境暴露对儿童哮喘免疫保护的动物实验和机制研究
- 批准号:82300031
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Integration of biophysics and deep learning to understand species-specificity of fertilization and the rapid evolution of protein disorder
整合生物物理学和深度学习来了解受精的物种特异性和蛋白质紊乱的快速进化
- 批准号:
10714030 - 财政年份:2023
- 资助金额:
$ 29.91万 - 项目类别:
Ultrashort Echo Time Magnetic Resonance Imaging of the Lumbar Intervertebral Disc.
腰椎间盘超短回波时间磁共振成像。
- 批准号:
10446888 - 财政年份:2022
- 资助金额:
$ 29.91万 - 项目类别:
Histology, Biochemistry and Molecular Imaging (HBMI) Core
组织学、生物化学和分子成像 (HBMI) 核心
- 批准号:
10232835 - 财政年份:2022
- 资助金额:
$ 29.91万 - 项目类别:
Cultured human fetal dermal extracellular matrix for scarless wound healing
培养的人胎儿真皮细胞外基质用于无疤痕伤口愈合
- 批准号:
10527429 - 财政年份:2022
- 资助金额:
$ 29.91万 - 项目类别: