Type 2 diabetes risk variant effects on mitochondrial (patho)physiology
2 型糖尿病风险变异对线粒体(病理)生理学的影响
基本信息
- 批准号:10717519
- 负责人:
- 金额:$ 78.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2027-04-30
- 项目状态:未结题
- 来源:
- 关键词:AffectBeta CellBindingBioenergeticsBiological AssayCell SurvivalCell physiologyCellsChromatinClustered Regularly Interspaced Short Palindromic RepeatsCompensationComplexDNA BindingDNA SequenceDefectDevelopmentDiseaseEtiologyFailureFunctional disorderGene Expression ProfileGenesGenetic DiseasesGenetic RiskGenetic TranscriptionGenomic DNAGenomicsHealthHealth systemHistone AcetylationHumanImmunodeficient MouseImpairmentIn VitroInsulinInsulin ResistanceIslet CellIslets of LangerhansIslets of Langerhans TransplantationKnockout MiceKnowledgeLinkMedicalMetabolicMitochondriaModificationMolecularNon-Insulin-Dependent Diabetes MellitusPancreasPatientsPeripheralPersonsPhenotypePhysiologyPrediabetes syndromePublic HealthQuantitative Trait LociRegulatory ElementReporter GenesReportingSingle Nucleotide PolymorphismTechniquesTestingUntranslated RNAValidationVariantWorkdiet-induced obesitygenome editinggenome wide association studygenomic locusglycemic controlimpaired glucose tolerancein vivoinnovationisletmitochondrial dysfunctionmitochondrial metabolismmouse modelnew therapeutic targetphysiologic modelpre-clinicalpreventrisk varianttooltraittranscription factor
项目摘要
PROJECT SUMMARY / ABSTRACT
Type 2 diabetes (T2D) results when pancreatic islet β-cells fail to secrete sufficient insulin to meet peripheral
insulin demand. Mitochondrial bioenergetics is central to the (patho)physiology of β-cell (dys)function, and recent
work suggests that β-cell mitochondrial dysfunction precedes the development of T2D in β-cells from donors
with impaired glucose tolerance (or pre-diabetes). Mitochondrial defects have been reported in the β-cells of
human T2D patients, but the etiology of mitochondrial dysfunction in T2D is unknown. Such mechanistic
knowledge is necessary to guide strategies to prevent or treat islet failure and T2D. Importantly, genome-wide
association studies (GWAS) link single nucleotide polymorphisms (SNPs) in >500 genetic loci to T2D and islet
dysfunction-related metabolic traits. The majority of these SNPs are non-coding and overlap regulatory elements
(REs) with broad transcriptional implications for affected cells. In this study, we combine our expertise in the
genomics of T2D, (epi)genomic modification, and mitochondrial function in β-cells to bridge the gap from genomic
association to mechanistic understanding. We hypothesize that non-coding T2D SNPs cause β-cell dysfunction
by altering RE use or activity, thereby changing expression of effector genes that directly impair mitochondrial
health. To test this, we propose to use sophisticated (epi)genomic editing tools in human islets and β-cell specific
mouse models for physiological relevance and validation in two complementary Aims. In Aim 1, we will test RE–
effector gene links in human islets using CRISPR-QTL. In parallel, we will assess T2D risk allele effects on RE
chromatin accessibility, activity, transcription factor binding, and β-cell expression of putative mitochondrial T2D
effector genes using complementary in vivo (single cell chromatin accessibility, histone acetylation, and
expression quantitative trait locus analysis of primary human islets) and in vitro (reporter gene, DNA-binding
assay) approaches. Finally, we will determine the consequences of effector gene perturbation on mitochondrial
phenotypes, β-cell viability, and insulin content and secretion in human islets and EndoC-βH3 cells. In Aim 2,
we harness β-cell-specific knockout mouse models to assign function to two high-priority mitochondrial T2D
effector genes in glycemic control, β-cell mass/function, and mitochondrial metabolism. Further, we will address
the importance of these mitochondrial T2D effector genes for β-cell compensation to peripheral insulin resistance
following diet-induced obesity. Finally, we will use (epi)genomic editing tools in human islets to determine if
mitochondrial T2D effector genes impair β-cell function and glycemic control in ex vivo assays as well as after
islet transplantation into immunodeficient mice. Completion of this study will generate new variant-to-function
connections that assign molecular and cellular functions to T2D risk alleles, identify novel therapeutic targets,
and provide important knowledge to guide subsequent strategies to prevent or treat β-cell failure and T2D.
项目概要/摘要
当胰岛 β 细胞无法分泌足够的胰岛素以满足外周血需要时,就会导致 2 型糖尿病 (T2D)
线粒体生物能学是 β 细胞(功能障碍)功能的(病理)生理学的核心。
研究表明,供体 β 细胞中 β 细胞线粒体功能障碍先于 2 型糖尿病的发生
据报道,葡萄糖耐量受损(或糖尿病前期)的β细胞存在线粒体缺陷。
人类 T2D 患者,但 T2D 线粒体功能障碍的病因尚不清楚。
知识对于指导预防或治疗胰岛衰竭和 T2D 的策略是必要的,重要的是,全基因组。
关联研究 (GWAS) 将超过 500 个基因位点的单核苷酸多态性 (SNP) 与 T2D 和胰岛联系起来
这些 SNP 中的大多数是非编码且重叠的调控元件。
(RE)对受影响的细胞具有广泛的转录影响在这项研究中,我们结合了我们在以下方面的专业知识。
T2D 的基因组学、(表观)基因组修饰和 β 细胞中的线粒体功能,以弥补基因组学的差距
我们勇敢地承认非编码 T2D SNP 会导致 β 细胞功能障碍。
通过改变 RE 使用或活性,改变效应基因的表达,从而直接损害线粒体
为了测试这一点,我们建议在人类胰岛和 β 细胞特异性中使用复杂的(表观)基因组编辑工具。
在两个互补目标中的生理相关性和验证的小鼠模型在目标 1 中,我们将测试 RE-。
同时,我们将使用 CRISPR-QTL 评估 T2D 风险等位基因对 RE 的影响。
假定线粒体 T2D 的染色质可及性、活性、转录因子结合和 β 细胞表达
使用互补的体内效应基因(单细胞染色质可及性、组蛋白乙酰化和
原代人胰岛的表达数量性状基因座分析)和体外(报告基因、DNA 结合
最后,我们将确定效应基因扰动对线粒体的影响。
在目标 2 中,人胰岛和 EndoC-βH3 细胞的表型、β 细胞活力以及胰岛素含量和分泌。
我们利用 β 细胞特异性敲除小鼠模型为两个高优先级线粒体 T2D 分配功能
此外,我们将讨论血糖控制、β细胞质量/功能和线粒体代谢中的效应基因。
这些线粒体 T2D 效应基因对于 β 细胞补偿外周胰岛素抵抗的重要性
最后,我们将在人类胰岛中使用(表观)基因组编辑工具来确定是否存在饮食引起的肥胖。
线粒体 T2D 效应基因在离体试验中以及试验后损害 β 细胞功能和血糖控制
胰岛移植到免疫缺陷小鼠中将产生新的功能变异。
将分子和细胞功能分配给 T2D 风险等位基因的连接,确定新的治疗靶点,
并提供重要知识来指导后续预防或治疗 β 细胞衰竭和 T2D 的策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Scott Soleimanpour其他文献
Scott Soleimanpour的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Scott Soleimanpour', 18)}}的其他基金
Control of beta cell identity by the mitochondrial life cycle
通过线粒体生命周期控制 β 细胞身份
- 批准号:
10619610 - 财政年份:2020
- 资助金额:
$ 78.88万 - 项目类别:
Control of beta cell identity by the mitochondrial life cycle
通过线粒体生命周期控制 β 细胞身份
- 批准号:
9890737 - 财政年份:2020
- 资助金额:
$ 78.88万 - 项目类别:
Control of beta cell identity by the mitochondrial life cycle
通过线粒体生命周期控制 β 细胞身份
- 批准号:
10454761 - 财政年份:2020
- 资助金额:
$ 78.88万 - 项目类别:
Mediators of mitophagy in the regulation of beta cell function
线粒体自噬调节β细胞功能的介质
- 批准号:
9237051 - 财政年份:2016
- 资助金额:
$ 78.88万 - 项目类别:
Mediators of mitophagy in the regulation of beta cell function
线粒体自噬调节β细胞功能的介质
- 批准号:
9761533 - 财政年份:2016
- 资助金额:
$ 78.88万 - 项目类别:
Endosomal regulation of GLP-1 receptor function in beta cells by Clec16a
Clec16a 对 β 细胞中 GLP-1 受体功能的内体调节
- 批准号:
9086362 - 财政年份:2015
- 资助金额:
$ 78.88万 - 项目类别:
Endosomal regulation of GLP-1 receptor function in beta cells by Clec16a
Clec16a 对 β 细胞中 GLP-1 受体功能的内体调节
- 批准号:
8949507 - 财政年份:2015
- 资助金额:
$ 78.88万 - 项目类别:
相似国自然基金
hhex调控vpp1阳性爪蛙腹胰前体细胞发育的分子机制的研究
- 批准号:31271554
- 批准年份:2012
- 资助金额:80.0 万元
- 项目类别:面上项目
相似海外基金
Role of Frizzled 5 in NK cell development and antiviral host immunity
Frizzled 5 在 NK 细胞发育和抗病毒宿主免疫中的作用
- 批准号:
10748776 - 财政年份:2024
- 资助金额:
$ 78.88万 - 项目类别:
Designing novel therapeutics for Alzheimer’s disease using structural studies of tau
利用 tau 蛋白结构研究设计治疗阿尔茨海默病的新疗法
- 批准号:
10678341 - 财政年份:2023
- 资助金额:
$ 78.88万 - 项目类别:
A role for cardiomyocyte pannexin 1 in non-ischemic heart failure
心肌细胞pannexin 1在非缺血性心力衰竭中的作用
- 批准号:
10680109 - 财政年份:2023
- 资助金额:
$ 78.88万 - 项目类别:
The role of core circadian regulator Bmal1 in axonal regeneration and nerve repair
核心昼夜节律调节因子 Bmal1 在轴突再生和神经修复中的作用
- 批准号:
10677932 - 财政年份:2023
- 资助金额:
$ 78.88万 - 项目类别:
Immunomodulatory and behavioral effects of CAR T regulatory cell therapy for Alzheimer's Disease”.
CAR T 调节细胞疗法对阿尔茨海默病的免疫调节和行为影响。
- 批准号:
10633721 - 财政年份:2023
- 资助金额:
$ 78.88万 - 项目类别: