Brain neural networks regulating inflammation
调节炎症的脑神经网络
基本信息
- 批准号:10718412
- 负责人:
- 金额:$ 64.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-18 至 2028-08-31
- 项目状态:未结题
- 来源:
- 关键词:Action PotentialsAfferent NeuronsAnxietyArthritisBiologicalBrainBrain StemColitisCommunicationCreativenessCytokine SignalingDataDeep Brain StimulationDevelopmentDiabetes MellitusDiagnosticEtiologyExposure toFosteringGeneticGenetic TechniquesGoalsGrantHealthInfectionInflammationInflammation MediatorsInflammatoryInflammatory ArthritisInflammatory ResponseInterleukin-1IschemiaMapsMental DepressionMissionMusNerveNervous SystemNeuroimmunomodulationNeurologicNeuronsNociceptorsOrgan TransplantationOutputPathogenesisPathway interactionsPeripheralPharmacogeneticsPhysiologicalPlayProcessProductionPublic HealthReportingResearchRoleSensorySignal TransductionTNF geneTechniquesTissuesTranscranial magnetic stimulationTransgenic MiceUnited States National Institutes of HealthVagus nerve structureVirusWorkbioelectronicscholinergic neuronclinically relevantcytokineinnovationneuralneural circuitneural networkneurotransmissionnovelnovel therapeuticsoptogeneticsresponseresponse to injury
项目摘要
Project Summary/Abstract
Inflammation, the primary biological response to injury and infection, is essential for survival and under precise
neuronal control. Sensory neurons, which densely innervate all bodily tissues, report the occurrence of
inflammation to the brain, because cytokines and other inflammatory mediators stimulate action potentials. The
arrival of incoming sensory signals stimulates brain neurons to send regulatory signals that return to the body
and regulate cytokine production. The vagus nerve, a major conduit for body-brain signaling, inhibits
inflammation and cytokine production in arthritis, colitis, ischemia, organ transplantation, anxiety-depression,
diabetes, and other conditions. In preliminary studies, we (1) used optogenetics and functional mapping to reveal
cholinergic neurons in the brain stem significantly increase splenic nerve activity and inhibit TNF production via
a significantly specific neuronal pathway; (2) assembled a unique bioelectronic vagus nerve recording toolkit and
nociceptor transgenic mouse colonies to reveal sensory vagus nerve pathways activated by IL-1 and TNF; and
(3) adapted Cre-based mouse lines and virus constructs enabling the functional combination of mapping
activated brain networks and subsequent targeted reactivation of these networks using pharmacogenetics. We
identified brain neural networks that respond specifically to IL-1 and TNF, but the function of these networks on
the development and progression of inflammation remain undefined. Our long-term goal is to reveal brain neural
networks regulating the onset and progression of inflammation, particularly within the setting of inflammatory
arthritis in which sensory neuron activation plays a key etiologic role. The objective of this grant is to characterize
the role for brain neural network activity in arthritis onset and progression. The central hypothesis is that brain
neural network activity plays a critical role in regulating inflammatory arthritis, and the activation of these neurons
regulates inflammation. Despite the clinical relevance and the direct importance to understanding basic
functional neurological mechanisms of inflammation, the role of brain networks controlling the onset and
progression of inflammatory arthritis is completely understudied. Our rationale is that identification of the
mechanism(s) to modulate brain neurons in the setting of inflammatory arthritis will reveal new therapeutic
opportunities. Here, we will leverage powerful genetic, pharmacogenetic, optogenetic, and bioelectronic
approaches for functional mapping and neural circuit analysis to unravel how brain networks are activated by
peripheral signals and how they relay outputs to the vagus nerve to impact inflammatory physiological responses.
We Aim to use (1) our recently developed genetic techniques which we have used to “trap” subsets of neurons
during conditions of activity induced by exposure to cytokines to define brain neural network activity during the
onset and progression of inflammatory arthritis and (2) our recently developed pharmacogenetic techniques to
selectively “reactivate” these same brain network neurons to assess the mechanisms by which these networks
modulate vagus nerve signaling, and therefore, the onset and progression of inflammatory arthritis. The
proposed research is innovative because we investigate the effect of brain neural network activity on
inflammatory arthritis, a previously unstudied mechanism.
1
项目概要/摘要
炎症是对损伤和感染的主要生物反应,对于生存至关重要,并且在精确的控制下
神经元控制 感觉神经元密集地支配所有身体组织,报告发生的情况。
大脑炎症,因为细胞因子和其他炎症介质会刺激动作电位。
传入感觉信号的到来刺激大脑神经元发送返回身体的调节信号
并调节细胞因子的产生,迷走神经是体脑信号传导的主要管道,可抑制细胞因子的产生。
关节炎、结肠炎、缺血、器官移植、焦虑抑郁症中的炎症和细胞因子产生,
在初步研究中,我们 (1) 使用光遗传学和功能图谱来揭示。
脑干中的胆碱能神经元通过显着增加脾神经活动并抑制 TNF 产生
(2)组装了独特的生物电子迷走神经记录工具包并
伤害感受器转基因小鼠群体揭示了 IL-1 和 TNF 激活的感觉迷走神经通路;
(3) 适应的基于 Cre 的小鼠品系和病毒构建体能够实现图谱的功能组合
激活大脑网络并随后使用药物遗传学有针对性地重新激活这些网络。
确定了对 IL-1 和 TNF 做出特异性反应的大脑神经网络,但这些网络的功能
炎症的发生和进展仍不清楚,我们的长期目标是揭示大脑神经。
调节炎症发生和进展的网络,特别是在炎症环境中
感觉神经元激活在关节炎中起关键的病因作用 这项资助的目的是确定其特征。
大脑神经网络活动在关节炎发作和进展中的作用的中心假设是大脑。
神经网络活动在调节炎症性关节炎中起着至关重要的作用,这些神经元的激活
尽管具有临床相关性并且对理解基础知识具有直接重要性。
炎症的功能性神经机制,大脑网络控制炎症发生和发作的作用
我们对炎症性关节炎的进展进行了完全充分的研究。
在炎症性关节炎中调节脑神经元的机制将揭示新的治疗方法
在这里,我们将利用强大的遗传学、药物遗传学、光遗传学和生物电子学。
功能映射和神经回路分析的方法,以揭示大脑网络如何被激活
外周信号以及它们如何将输出传递到迷走神经以影响炎症生理反应。
我们的目标是使用(1)我们最近开发的遗传技术,我们用它来“捕获”神经元子集
在暴露于细胞因子诱导的活动条件下定义脑神经网络活动
炎症性关节炎的发病和进展以及(2)我们最近开发的药物遗传学技术
选择性地“重新激活”这些相同的大脑网络神经元,以评估这些网络的机制
调节迷走神经信号传导,从而调节炎症性关节炎的发生和进展。
拟议的研究具有创新性,因为我们研究了大脑神经网络活动对
炎症性关节炎,一种以前未经研究的机制。
1
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sangeeta S. Chavan其他文献
Sangeeta S. Chavan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sangeeta S. Chavan', 18)}}的其他基金
The ion channel TRPA1 is required for suppression of inflammation in sepsis
离子通道 TRPA1 是抑制脓毒症炎症所必需的
- 批准号:
10356812 - 财政年份:2019
- 资助金额:
$ 64.1万 - 项目类别:
The ion channel TRPA1 is required for suppression of inflammation in sepsis
离子通道 TRPA1 是抑制脓毒症炎症所必需的
- 批准号:
9918914 - 财政年份:2019
- 资助金额:
$ 64.1万 - 项目类别:
相似国自然基金
面向类脑智能感知的编码运算一体化柔性电子传入神经元的研究
- 批准号:
- 批准年份:2021
- 资助金额:60 万元
- 项目类别:面上项目
不同刺灸法激活的穴位传入神经元及时间-空间反应特性
- 批准号:81973967
- 批准年份:2019
- 资助金额:55 万元
- 项目类别:面上项目
有髓传入神经纤维相应DRG神经元中Cav3.2通道N-糖基化在DPN触诱发痛发生发展中的作用机制研究
- 批准号:81801219
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
通过内皮素-1探索初级传入神经元感受疼痛或搔痒的细胞机制
- 批准号:81171040
- 批准年份:2011
- 资助金额:55.0 万元
- 项目类别:面上项目
相似海外基金
Advancing Development of Novel Immunotherapy for Chemotherapy-induced Peripheral Neuropathy (CIPN)
推进化疗引起的周围神经病变 (CIPN) 的新型免疫疗法的发展
- 批准号:
10588384 - 财政年份:2023
- 资助金额:
$ 64.1万 - 项目类别:
Sickle cell disease gut dysbiosis effects on CNS pain processing
镰状细胞病肠道菌群失调对中枢神经系统疼痛处理的影响
- 批准号:
10747045 - 财政年份:2023
- 资助金额:
$ 64.1万 - 项目类别:
Unraveling the role of satellite glial cells in sensory hypersensitivity in Fragile X syndrome
揭示卫星胶质细胞在脆性 X 综合征感觉超敏反应中的作用
- 批准号:
10752180 - 财政年份:2023
- 资助金额:
$ 64.1万 - 项目类别:
Development, Function, and Dysfunction of Gastrointestinal Tract-Innervating Dorsal Root Ganglia Neurons in Autism Spectrum Disorder
自闭症谱系障碍中胃肠道支配的背根神经节神经元的发育、功能和功能障碍
- 批准号:
10584142 - 财政年份:2023
- 资助金额:
$ 64.1万 - 项目类别: