Bioengineered corneal endothelial graft using photodegradable device to induce graft-host integration
使用光降解装置诱导移植物-宿主整合的生物工程角膜内皮移植物
基本信息
- 批准号:10719330
- 负责人:
- 金额:$ 38.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-30 至 2028-04-30
- 项目状态:未结题
- 来源:
- 关键词:AdhesionsAnimal ModelAnteriorBasement membraneBiocompatible MaterialsBiological AssayBiomedical EngineeringBiomimeticsCell MaturationCell TransplantationCell physiologyCell-Cell AdhesionCellsCorneaCorneal DiseasesCorneal EndotheliumCuesDepositionDevelopmentDevicesDisease modelDonor personEndothelial CellsEngineeringEngraftmentEvaluationExposure toExtracellular MatrixEyeFailureFilmGelatinGrowthHistologicHourHumanHydrogelsImageImage AnalysisIn VitroK ATPaseKeratoplastyKineticsLabelLightMeasurementMechanicsMetabolicMethacrylatesMissionModelingModulusMorphologyNanotopographyOrgan Culture TechniquesOryctolagus cuniculusPatientsPersonsPhysiologic Intraocular PressurePilot ProjectsProceduresProliferatingPublic HealthQuality of lifeRecoveryResearchSurgeonTechnologyTissue EngineeringTissuesTransplantationUnited States National Institutes of HealthVisionWaiting ListsWorkYam - dietaryanterior chamberbiomaterial compatibilitycyanine dyedesignextracellulargraft functionhigh throughput analysisimprovedin vivoinnovationlithographymonolayernanopatternprogenitorreconstructionresponsetechnology developmenttooltwo-photon
项目摘要
PROJECT SUMMARY
Although the bioengineered human corneal endothelial cell (hCEC) monolayer graft have shown vision
recovery in animal models, the hCEC monolayer do not integrate with the host cornea due to suboptimal and
non-tunable degradation of the hCEC-carrier biomaterial in the anterior chamber, which provide mechanical
support to the monolayer. Thus, whether the transplanted hCEC monolayer will integrate with the host cornea
following the complete degradation of the hCEC-carrier biomaterial and remain functional thereafter is
unknown. To validate the bioengineered hCEC monolayers, there is a clear need to develop a biomaterial that
has tunable-degradation rate in-vivo to evaluate the engraftment of the hCECs, and is mechanically strong so
that the biomaterial-film/hCEC-monolayer construct does not break during the transplantation. The previous
work of the team has established that the extracellular-topography cues can significantly modulate hCEC
responses. The preliminary work of the team has developed photodegradable hydrogel (pdGel), which can be
degraded in a tunable manner after transplantation, within hours to weeks, using tissue-penetrative light.
Accordingly, the objective of this proposal is to develop a nano-topography pdGel-hCEC monolayer graft,
evaluate monolayer integration with host cornea by tuning the in-vivo degradation rate of the pdGel, and
validate the hCEC-monolayer function in-vivo. It is hypothesized that the nano-patterned pdGel will enable the
growth of hCECs as a confluent monolayer, improve the hCEC monolayer function and stability by inducing the
deposition of native-like extracellular matrix (ECM), and the tunable photodegradation of the carrier will
improve the engraftment of the hCEC monolayer. The rationale for this project is the evaluation of the
engraftment of hCEC monolayer with the cornea and the function thereafter will validate the use of
bioengineered hCEC grafts for potential treatment of multiple corneal patients with one donor. Towards the
overall objective, in the first aim, the hCEC monolayer growth on the pdGel, photodegradation kinetics, the
biocompatibility of the degradation products, and the engraftment of the monolayer will be evaluated in-vitro
and ex–vivo. In the second aim, using a high-throughput topography platform, the effect of 253 unique pdGel
topographies will be evaluated on the hCEC monolayer functions to identify the optimum graft design. In the
third aim, the photodegradation rate will be tuned in-vivo using light exposure to evaluate its effect on the
hCEC engraftment. The proposed research is expected to be significant because it will validate the
bioengineered hCEC-monolayer graft technology using a new photodegradable biomaterial, and it will develop
new biomaterial and nano-topography platform that will have significant applications beyond ocular tissue
engineering. The proposed research is innovative because it, (1) uses two-photon lithography approach to
develop an innovative, high throughput nano-topography platform, and (2) leverages the photo-decomposition
liability of the cyanine dye to develop an innovative photodegradable hydrogel for hCEC engraftment.
项目概要
尽管生物工程人角膜内皮细胞(hCEC)单层移植物已显示出视力
在动物模型恢复中,hCEC 单层由于次佳和不与宿主角膜整合。
前房中 hCEC 载体生物材料的不可调节降解,提供机械性能
因此,移植的 hCEC 单层是否会与宿主角膜融合。
hCEC 载体生物材料完全降解并保持功能后
为了验证生物工程 hCEC 单层,显然需要开发一种生物材料。
具有可调节的体内降解率来评估 hCEC 的植入,并且机械强度高,因此
生物材料膜/hCEC单层结构在移植过程中不会破裂。
该团队的工作已经确定细胞外拓扑线索可以显着调节 hCEC
该团队的前期工作开发了可光降解水凝胶(pdGel),它可以
移植后,使用组织穿透光,在数小时至数周内以可调节的方式降解。
因此,本提案的目标是开发纳米形貌 pdGel-hCEC 单层移植物,
通过调节 pdGel 的体内降解率来评估单层与宿主角膜的整合,以及
体内验证 hCEC 单层功能 人们再次认识到纳米图案的 pdGel 将能够实现
hCEC 作为汇合单层生长,通过诱导 hCEC 单层功能和稳定性
类似天然细胞外基质(ECM)的沉积,以及载体的可调光降解作用将
改善 hCEC 单层的植入 该项目的基本原理是评估
hCEC 单层植入角膜及其后的功能将验证
生物工程 hCEC 移植物可用于用一名捐赠者治疗多个角膜患者。
总体目标,第一个目标是 pdGel 上的 hCEC 单层生长、光降解动力学、
降解产物的生物相容性和单层的植入将在体外进行评估
在第二个目标中,使用高通量形貌平台,研究 253 独特的 pdGel 的效果。
将根据 hCEC 单层功能评估拓扑结构,以确定最佳移植物设计。
第三个目标,将使用光照射在体内调整光降解率,以评估其对
hCEC 植入预计将具有重要意义,因为它将验证
使用新型光降解生物材料的生物工程hCEC单层移植技术,将开发
新的生物材料和纳米形貌平台将在眼组织之外具有重要的应用
所提出的研究具有创新性,因为(1)使用双光子光刻方法
开发创新的高通量纳米形貌平台,并且(2)利用光分解
花青染料有责任开发一种用于 hCEC 移植的创新光降解水凝胶。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Muhammad Rizwan其他文献
Muhammad Rizwan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Muhammad Rizwan', 18)}}的其他基金
Development of Complex Liver Organoids Using Cell-Specific Patterned Biomaterials
使用细胞特异性图案化生物材料开发复杂的肝脏类器官
- 批准号:
10654156 - 财政年份:2023
- 资助金额:
$ 38.64万 - 项目类别:
相似国自然基金
髋关节撞击综合征过度运动及机械刺激动物模型建立与相关致病机制研究
- 批准号:82372496
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
基于中医经典名方干预效应差异的非酒精性脂肪性肝病动物模型证候判别研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
利用肝癌动物模型开展化学可控的在体基因编辑体系的研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
雌激素抑制髓系白血病动物模型中粒细胞异常增生的机制
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
无菌动物模型与单细胞拉曼技术结合的猴与人自闭症靶标菌筛选及其机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Molecular engineering of HA-based lubricants for articular cartilage
用于关节软骨的 HA 基润滑剂的分子工程
- 批准号:
10712721 - 财政年份:2023
- 资助金额:
$ 38.64万 - 项目类别:
Biomolecule releasing adhesive for cell-mediated labral repair
用于细胞介导的盂唇修复的生物分子释放粘合剂
- 批准号:
10736334 - 财政年份:2023
- 资助金额:
$ 38.64万 - 项目类别:
Tissue Adhesive RNA Interference Nanoparticles to Block Progression of Posttraumatic and Spontaneous Osteoarthritis.
组织粘附 RNA 干扰纳米颗粒可阻止创伤后和自发性骨关节炎的进展。
- 批准号:
10539405 - 财政年份:2022
- 资助金额:
$ 38.64万 - 项目类别:
Bioactive adhesive material for early vaginal wall detachment in pelvic organ prolapse
生物活性粘合材料治疗盆腔器官脱垂早期阴道壁脱离
- 批准号:
10328255 - 财政年份:2019
- 资助金额:
$ 38.64万 - 项目类别: