The role of mito-nuclear communication in the adaptation to mitochondrial dysfunction and stress resistance
线粒体核通讯在适应线粒体功能障碍和应激抵抗中的作用
基本信息
- 批准号:10713440
- 负责人:
- 金额:$ 36.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:AgeAgingBasic ScienceBiologicalBiological ProcessCell physiologyCellsCellular StressCommunicationCytoprotectionDiseaseFoundationsFunctional disorderGene ExpressionGeneticGenomeGenotypeGoalsHaplotypesHemostatic functionHomeostasisHumanHuman PathologyHuntington DiseaseInterventionKnowledgeLaboratoriesLeber&aposs Hereditary Optic NeuropathyLinkMaintenanceMalignant NeoplasmsMetabolismMissionMitochondriaMitochondrial DNAMitochondrial DiseasesModelingMolecularNational Institute of General Medical SciencesNerve DegenerationNon-Insulin-Dependent Diabetes MellitusNuclearObesityPathway interactionsPublic HealthResearchResearch Project GrantsResistanceRoleSpecificityStressSystemTestingYeastsbiological adaptation to stresscellular engineeringfitnessheteroplasmyhuman diseaseinnovationmitochondrial dysfunctionnew therapeutic targetnovelpharmacologicresponsestressor
项目摘要
PROJECT SUMMARY/ABSTRACT
Interactions between mitochondrial (mtDNA) and nuclear (nDNA) genomes are essential for
maintaining mitochondrial and cellular functions. However, an age- and disease-associated increase of
heteroplasmic mtDNA (the presence of different mtDNA haplotypes) creates an inter-genomic mismatch that
perturbs mitonuclear interaction efficiency. Disrupted mitonuclear interaction results in mitochondrial
dysfunction, reduced organismal fitness, and initiation of various stress that has been associated with a
plethora of many human diseases, such as Huntington's disease, Leber's hereditary optic neuropathy, and
type 2 diabetes mellitus. In response to disrupted mitonuclear interactions, cells activate stress response
pathways to remodel gene expression and metabolism, thereby maintaining mitochondrial function and
alleviating cellular stress. However, a detailed molecular understanding of mitonuclear mechanisms linking
activation of stress response pathways for maintaining mitochondrial function and stress resistance has been
understudied, representing a significant knowledge gap. I hypothesize that distinct mismatched mitonuclear
genomes maintain coordination of mitochondrial status with various stress response pathways to alleviate
harmful consequences of suboptimal mitonuclear interactions. To test this hypothesis, we developed a novel
yeast mitonuclear exchange model (cytoductants) by combining more than 100 mtDNA genotypes onto the
same nDNA genetic background, thereby generating an elegant system with various degrees of perturbation in
mitonuclear interaction and altered mitochondrial function. Overall, the main goal of our research is to
mechanistically understand how perturbations in mitonuclear interaction are transduced into biological effects.
My laboratory will build and sustain three research projects to accomplish this goal. We will first test the
hypothesis that understanding mitonuclear communication at molecular level will uncover distinct mitonuclear
responses to perturbed mitonuclear interactions. (Project 1). Secondly, we will identify the crosstalk between
stress response pathways and their downstream effectors in protecting cells from various stress under the
condition of perturbed mitonuclear interaction. Further, we will determine whether a specific type of stressor
determines the specificity of the response or not (Project 2). Finally, with an innovative cell engineering
approach, we will investigate the hypothesis that balancing cellular energy hemostasis can mitigate the effect
of disrupted mitonuclear interaction (Project 3). The proposed research is significant because it will uncover
how cells respond to disrupted mitonuclear interactions to maintain cellular homeostasis. Since many
mitochondrial diseases are carried in heteroplasmy, this basic research into the maintenance of mitonuclear
interaction will likely identify modulators of efficient mitochondrial interaction. It might be targeted
pharmacologically to treat human pathologies associated with mitonuclear dysfunction, such as
neurodegeneration and aging.
项目概要/摘要
线粒体 (mtDNA) 和核 (nDNA) 基因组之间的相互作用对于
维持线粒体和细胞功能。然而,与年龄和疾病相关的增加
异质性 mtDNA(不同 mtDNA 单倍型的存在)造成基因组间不匹配,
扰乱线粒体核相互作用效率。线粒体核相互作用中断导致线粒体
功能障碍、机体适应性下降以及与疾病相关的各种压力的产生
许多人类疾病,例如亨廷顿氏舞蹈病、莱伯氏遗传性视神经病和
2 型糖尿病。为了应对线粒体核相互作用中断,细胞激活应激反应
重塑基因表达和代谢的途径,从而维持线粒体功能和
减轻细胞压力。然而,对线粒体核机制的详细分子理解
激活应激反应途径以维持线粒体功能和应激抵抗力
研究不足,代表着巨大的知识差距。我假设明显不匹配的线粒体
基因组维持线粒体状态与各种应激反应途径的协调,以缓解压力
次优线粒体核相互作用的有害后果。为了检验这个假设,我们开发了一部小说
通过将 100 多种 mtDNA 基因型组合到酵母线粒体核交换模型(细胞诱导剂)
相同的nDNA遗传背景,从而产生一个具有不同程度扰动的优雅系统
线粒体核相互作用和线粒体功能改变。总的来说,我们研究的主要目标是
从机制上理解线粒体相互作用中的扰动如何转化为生物效应。
我的实验室将建立并维持三个研究项目来实现这一目标。我们将首先测试
假设在分子水平上理解线粒体核通讯将揭示不同的线粒体核
对扰动的线粒体核相互作用的反应。 (项目1)。其次,我们将识别之间的串扰
应激反应途径及其下游效应器在保护细胞免受各种应激的作用
线粒体核相互作用受到干扰的情况。此外,我们将确定特定类型的压力源是否
确定响应的特异性与否(项目 2)。最后,通过创新的细胞工程
方法,我们将研究平衡细胞能量止血可以减轻影响的假设
线粒体核相互作用中断(项目 3)。拟议的研究意义重大,因为它将揭示
细胞如何应对受损的线粒体核相互作用以维持细胞稳态。由于许多
线粒体疾病以异质性的形式进行,这项基础研究涉及线粒体核的维持
相互作用可能会识别有效线粒体相互作用的调节剂。可能会被针对
通过药理学来治疗与线粒体核功能障碍相关的人类病理,例如
神经退行性变和衰老。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alaattin Kaya其他文献
Alaattin Kaya的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alaattin Kaya', 18)}}的其他基金
MOLECULAR MECHANISMS OF NATURAL LIFESPAN VARIATION
自然寿命变化的分子机制
- 批准号:
10002117 - 财政年份:2019
- 资助金额:
$ 36.93万 - 项目类别:
MOLECULAR MECHANISMS OF NATURAL LIFESPAN VARIATION
自然寿命变化的分子机制
- 批准号:
10418827 - 财政年份:2019
- 资助金额:
$ 36.93万 - 项目类别:
MOLECULAR MECHANISMS OF NATURAL LIFESPAN VARIATION
自然寿命变化的分子机制
- 批准号:
10171748 - 财政年份:2019
- 资助金额:
$ 36.93万 - 项目类别:
相似国自然基金
ALA光动力上调炎症性成纤维细胞ZFP36抑制GADD45B/MAPK通路介导光老化皮肤组织微环境重塑的作用及机制研究
- 批准号:82303993
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
YAP1-TEAD通过转录调控同源重组修复介导皮肤光老化的作用机制
- 批准号:82371567
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
下丘脑乳头上核-海马齿状回神经环路在运动延缓认知老化中的作用及机制研究
- 批准号:82302868
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
微纳核壳结构填充体系构建及其对聚乳酸阻燃、抗老化、降解和循环的作用机制
- 批准号:52373051
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
KIAA1429介导MFAP4-m6A甲基化修饰在紫外线诱导皮肤光老化中的作用和机制研究
- 批准号:82373461
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 36.93万 - 项目类别:
Engineered hybrid aging model for disease progression
用于疾病进展的工程混合衰老模型
- 批准号:
10608767 - 财政年份:2023
- 资助金额:
$ 36.93万 - 项目类别:
Microglial Activation and Inflammatory Endophenotypes Underlying Sex Differences of Alzheimer’s Disease
阿尔茨海默病性别差异背后的小胶质细胞激活和炎症内表型
- 批准号:
10755779 - 财政年份:2023
- 资助金额:
$ 36.93万 - 项目类别:
Cause and Effect Relationships Between Glycation and the Ancestry Specific Tumor Stroma
糖化与祖先特异性肿瘤基质之间的因果关系
- 批准号:
10586185 - 财政年份:2023
- 资助金额:
$ 36.93万 - 项目类别:
2021 Mitochondria in Health and Disease Gordon Research Conference
2021 年线粒体健康与疾病戈登研究会议
- 批准号:
10236763 - 财政年份:2023
- 资助金额:
$ 36.93万 - 项目类别: