Modeling and Mapping Human Action Regulation Networks
人类行为调节网络的建模和映射
基本信息
- 批准号:10712708
- 负责人:
- 金额:$ 103.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-15 至 2028-06-30
- 项目状态:未结题
- 来源:
- 关键词:AffectArchitectureBasal GangliaBehaviorBehavioralBrainClinicalCollaborationsComputer ModelsDataDeep Brain StimulationDiseaseDisparateEffectivenessEnvironmentFaceFailureFundingGilles de la Tourette syndromeGoalsHumanHybridsIndividualJoystickManufactured basketballMapsMediatingMental disordersModelingMotorMovementNeurobiologyNeurosciencesNeurosurgical ProceduresObsessive-Compulsive DisorderOperative Surgical ProceduresOutcomeParkinson DiseaseParticipantPathway interactionsPatientsPersonsPhysiologicalPhysiologyRegulationResearch PersonnelResolutionRewardsRoleSTN stimulationSignal TransductionSourceSpecificityStructure of subthalamic nucleusTestingUpdateValidationWorkagedbrain circuitrybrain dysfunctioncostdesignenvironmental changeexperimental studyflexibilityhigh rewardimplantationimprovedkinematicsmotor behaviornervous system disorderneuralneural circuitneuromechanismneurophysiologyneuropsychiatric disorderneuroregulationneurorestorationpredictive modelingresponsesensorimotor systemtheoriesvolunteer
项目摘要
Abstract
Humans can rapidly regulate actions according to updated demands of the environment. A key component of
action regulation is action inhibition, the failure of which contributes to various neuropsychiatric diseases, such
as Parkinson’s disease (PD), obsessive compulsive disorder and Tourette syndrome. Action inhibition occurs in
at least 3 ways: (i) action selection – selecting one action requires suppressing alternative motor plans, (ii)
outright stopping – inhibiting a response when it is rendered inappropriate and (iii) action switching – change
action plans in response to environmental changes. Despite the extensive effort to understand how the brain
selects, stops and switches actions, the mechanism underlying these action regulation functions, and more
importantly, how they inter-relate remain elusive. Part of this challenge lies in the fact that studies rarely explore,
characterize, and investigate these functions together, making it difficult to develop a unified theory that explains
the computational aspects of action regulation. The current proposal aims to advance our understanding by
developing a neurocomputational model that, unlike prior models, integrates information from multiple sources
(e.g., value of targets, cost for changing an action, contextual information) and predicts both kinematics of motor
behavior and the underpinning neural mechanisms across 3 distinct types of action regulation. We will directly
evaluate model predictions with intracranial recordings in patient volunteers undergoing deep brain stimulation
implantation surgeries. These surgeries provide a unique opportunity to obtain multi-focal cortical and basal
ganglia (BG) recordings with high temporal and spectral resolution and spatial specificity across the three action
regulation tasks. The overarching goal will be achieved through three aims. In Aim 1, we will collect behavioral
data from PD patients and aged-match neurotypical participants performing tasks that involves selecting,
stopping and switching reaching actions. The motor behavior of the neurotypical group will be used to develop
a neurocomputational model that simulate the fronto-BG circuits in action regulation. Then, we will assess how
specific changes on the neural mechanisms of the model architecture predict the motor behavior of the PD
patients. In Aim 2, we will evaluate the model predictions about the mechanisms of action selection relative to
stopping by recording neural activity from PD patients who undergo surgery for DBS implantation of the
subthalamic nucleus (STN). Neural recordings will be collected without and with temporally and spatially precise
subthalamic nucleus (STN) stimulation to investigate the causal role of STN in action selection. In Aim 3, we will
evaluate the model predictions about the mechanisms for switching actions by recording neural activity from PD
patients with the STN stimulation off and on. Overall, successful completion will provide a unified theory of action
regulation in the human brain, with both behavioral and physiological validation, opening new avenues on
improving the effectiveness of neuromodulation with DBS and other neurorestorative therapies.
抽象的
人类可以根据对环境的最新需求快速调节行动。一个关键组成部分
行动调节是行动抑制,导致各种神经精神疾病的失败,此类
作为帕金森氏病(PD),强迫症和图雷特综合症。行动抑制发生在
至少3种方法:(i)行动选择 - 选择一个动作需要抑制替代电机计划,(ii)
彻底停止 - 在使响应变得不适当和(iii)切换时抑制响应 - 更改
响应环境变化的行动计划。尽管付出了广泛的努力,以了解大脑如何
选择,停止和切换动作,这些动作调节功能的基础机制以及更多
重要的是,他们之间的相互关系仍然难以捉摸。这一挑战的一部分在于研究很少探索,
表征并一起研究这些功能,使得很难开发一种统一的理论来解释
动作调节的计算方面。当前的提议旨在通过
开发一个神经计算模型,与先前的模型不同,该模型从多个来源集成了信息
(例如,目标的价值,更改动作的成本,上下文信息)并预测电动机的两种运动学
行为和三种不同类型的作用调节类型的神经机制的基础。我们将直接
评估模型预测患者志愿者正在接受深脑刺激的患者志愿者中的颅内记录预测
植入手术。这些手术提供了获得多焦点皮质和基本的独特机会
在这三个动作中具有高临时和光谱分辨率和空间特异性的神经节记录(BG)记录
法规任务。总体目标将通过三个目标实现。在AIM 1中,我们将收集行为
来自PD患者和老年匹配的神经型参与者的数据,执行涉及选择,
停止并切换到达动作。神经型组的运动行为将用于发展
一种在作用调节中模拟额 - -BG电路的神经计算模型。然后,我们将评估如何
模型结构的神经机制的具体变化预测了PD的运动行为
患者。在AIM 2中,我们将评估有关相对于动作选择机制的模型预测
通过记录接受DBS植入手术的PD患者的神经活动来停止
丘脑下核(STN)。神经记录将在没有临时和空间精确的情况下收集
丘脑下核(STN)刺激以研究STN在作用选择中的因果作用。在AIM 3中,我们将
通过记录PD的神经活动来评估有关转换动作机制的模型预测
具有STN刺激的患者关闭。总体而言,成功完成将提供统一的行动理论
人脑中的调节,具有行为和身体验证,开辟了新的途径
通过DBS和其他神经训练疗法提高神经调节的有效性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vasileios N Christopoulos其他文献
Vasileios N Christopoulos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
“共享建筑学”的时空要素及表达体系研究
- 批准号:
- 批准年份:2019
- 资助金额:63 万元
- 项目类别:面上项目
基于城市空间日常效率的普通建筑更新设计策略研究
- 批准号:51778419
- 批准年份:2017
- 资助金额:61.0 万元
- 项目类别:面上项目
宜居环境的整体建筑学研究
- 批准号:51278108
- 批准年份:2012
- 资助金额:68.0 万元
- 项目类别:面上项目
The formation and evolution of planetary systems in dense star clusters
- 批准号:11043007
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
新型钒氧化物纳米组装结构在智能节能领域的应用
- 批准号:20801051
- 批准年份:2008
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Tissue Engineered Nigrostriatal Pathway for Anatomical Tract Reconstruction in Parkinson's Disease
组织工程黑质纹状体通路用于帕金森病的解剖束重建
- 批准号:
10737098 - 财政年份:2023
- 资助金额:
$ 103.86万 - 项目类别:
Methamphetamine, HIV integration and latency in the brain
甲基苯丙胺、艾滋病毒整合和大脑潜伏期
- 批准号:
10814672 - 财政年份:2023
- 资助金额:
$ 103.86万 - 项目类别:
Ischemic Stroke in Cerebral Amyloid Angiopathy: Microvascular Injury and Recovery
脑淀粉样血管病中的缺血性中风:微血管损伤和恢复
- 批准号:
10675490 - 财政年份:2022
- 资助金额:
$ 103.86万 - 项目类别:
A Multi-Modal Remote Monitoring Platform for Frontotemporal Lobar Degeneration Syndromes
额颞叶变性综合征的多模式远程监测平台
- 批准号:
10597923 - 财政年份:2022
- 资助金额:
$ 103.86万 - 项目类别:
Ischemic Stroke in Cerebral Amyloid Angiopathy: Microvascular Injury and Recovery
脑淀粉样血管病中的缺血性中风:微血管损伤和恢复
- 批准号:
10537550 - 财政年份:2022
- 资助金额:
$ 103.86万 - 项目类别: