Macro-to-micro (M2µ) Activity Apportionment for αRPT
αRPT 的宏观到微观 (M2µ) 活动分配
基本信息
- 批准号:10713712
- 负责人:
- 金额:$ 49.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-19 至 2028-08-31
- 项目状态:未结题
- 来源:
- 关键词:Alpha Particle EmitterAlpha ParticlesAnatomyAnimalsAntibodiesBone MarrowClinicalClinical TrialsCombined Modality TherapyDataDoseDose LimitingDrug KineticsERBB2 geneFDA approvedFOLH1 geneFamily suidaeFractionationGoalsHumanImageKidneyLacrimal gland structureLinkLiteratureLiverLungMalignant NeoplasmsMalignant neoplasm of prostateMeasurementMeasuresMedicineMetastatic Neoplasm to the BoneMethodologyMethodsMicroscopicMiniature SwineModalityModelingMusOrganOrgan ModelPatientsPeptidesPre-Clinical ModelProcessPublishingRadiobiologyRadioisotopesRadiopharmaceuticalsReportingRiskSalivary GlandsSmall IntestinesStandardizationTestingTherapeuticTherapeutic UsesTimeToxic effectTranslatingTranslationsUncertaintyUnited States National Institutes of HealthWorkabsorptioncancer therapyclinical practiceclinically relevantdesigndosimetryinterestmouse modelparticleparticle therapyporcine modelpre-clinicalpredicting responseprogramsresponsesingle photon emission computed tomographysmall moleculespatiotemporaltargeted deliverytargeted treatmenttranslation to humanstreatment planning
项目摘要
Recent advances in the targeted delivery of radionuclides and the increased availability of -emitters appropriate
for clinical use have led to patient trials of multiple α-emitter radiopharmaceutical therapeutics (RPTs). One of
these, Xofigo (223RaCl2) was FDA-approved and is in routine clinical practice, with many others likely to follow.
One of the stated goals (pillars) of the NIH is a greater level of personalization in medicine. In the realm of
radiopharmaceutical therapy (RPT) this translates directly as a need for more accurate personalized dosimetry
in order to enable fractionation and administered activity tailored to each patient. However, current dosimetry
paradigms are poorly suited to RPT. This reality is reflected by the discrepancies between clinical (or
experimental) toxicity and expected toxicity calculated using standard organ-level (or voxel-level) dosimetry,
including most notably: (a) hematotoxicity in 223Ra therapy of bone metastases, (b) renal and salivary gland
toxicity in pre-clinical models and patients. The objective of this work is to create a dosimetric methodology more
suited to αRPT, namely the Macro to micro (M2) methodology, which requires sub-organ activity apportionment
factors for organs at risk. This will be accomplished via the following Aims: 1. In murine models, measure αRPT
activity concentration in selected whole organs and in relevant organ sub-regions; generate apportionment factor
histograms. The translation to human assumes that the link between macroscopic and microscopic
spatiotemporal relationship for a given agent measured in a pre-clinical model will apply to the human as the
distribution of the agent to the different microscopic compartments should remain the same. We will test and
quantify the validity of this assumption and refine the human apportionment factors by introducing a third species,
the mini-pig In Aim 2. We will assess apportionment factor transferability, by obtaining corresponding
apportionment factor histograms for a porcine model. In Aim 3. We will demonstrate that M2µ predicts toxicity in
the porcine model. 4. Apply the M2µ methodology to clinical trial data to quantify the potential benefit of
personalized M2µ dosimetry and/or derive dose–response relationships. Successful completion of the proposal
will reconcile experimental and clinical results not currently understood and provide a robust standardized
dosimetry for personalized dosimetry-based treatment planning of αRPT. Such standardization will enable the
dosimetry to be normalized to EQD2, thus enabling rational combinations with other RPTs or external beam
therapy as well as relevant absorbed dose reporting. Here we plan to expand this approach to encompass the
wide range of RPT/organ combinations that have either been shown to be or are potentially dose-limiting and
that require the Macro to micro (M2) methodology to properly correlate dosimetry with toxicity thresholds and
provide a deliverable that will allow end-users to convert macroscopically-measured activity to standardized
dosimetry at the organ and (clinically relevant) sub-organ-level for a wide range of RPTs and correspondingly
relevant organs.
靶向放射线的目标交付的最新进展以及适当的e发射器的可用性增加
为了临床用途,导致了多种α-发射体放射药物治疗(RPTS)的患者试验。之一
这些,Xofigo(223RACL2)经过FDA批准,并处于常规临床实践中,许多其他人可能会遵循。
NIH的既定目标之一是医学的个性化水平。在
放射性药物治疗(RPT)直接翻译成更准确的个性化剂量测定法
为了实现分馏和为每个患者量身定制的活动。但是,当前的剂量法
范式适合RPT。临床之间的差异反映了这种现实(或
实验性的毒性和预期的毒性,使用标准器官级(或体素级)剂量测定法计算出毒性,
最值得注意的是:(a)223RA骨转移治疗中的血毒性,(b)肾脏和唾液腺
临床前模型和患者的毒性。这项工作的目的是更多地创建剂量学方法
适用于αRPT,即宏到微(M2)方法,这需要亚器官活动分配
器官有风险的因素。这将通过以下目的完成:1。在鼠模型中,测量αRpt
选定的整个器官和相关器官子区域中的活性浓度;产生批准因素
直方图。对人类的翻译假定宏观与微观之间的联系
在临床前模型中测得的给定药物的时空关系将适用于人作为人类
代理到不同显微镜室的分布应保持不变。我们将测试和
量化该假设的有效性,并通过引入第三种,
AIM 2中的Mini-PIG。我们将通过获得相应
猪模型的分配因子直方图。在AIM 3中。我们将证明M2µ预测毒性
猪模型。 4。将M2µ方法应用于临床试验数据,以量化
个性化的M2µ剂量法和/或得出剂量反应关系。成功完成提案
将调和实验和临床结果当前尚不理解并提供可靠的标准化
基于个性化剂量法的剂量测定αRPT。这样的标准化将使
剂量测定要归一化为eqd2,从而可以与其他RPT或外部梁合理组合
治疗以及相关的吸收剂量报告。在这里,我们计划扩展这种方法,以包含
已证明是或潜在的剂量限制的范围广泛的RPT/器官组合
这需要宏与微(M2)方法,以将剂量法与毒性阈值正确相关
提供可允许最终用户将宏观测量活动转换为标准化的可送达
在器官和(临床上相关的)子管道级的剂量测定范围内,相应的RPT范围
相关器官。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Francois Hobbs其他文献
Robert Francois Hobbs的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Francois Hobbs', 18)}}的其他基金
Combination Radiopharmaceutical Therapy and External Beam Radiotherapy
放射药物治疗与外照射放射治疗的联合治疗
- 批准号:
10473785 - 财政年份:2020
- 资助金额:
$ 49.89万 - 项目类别:
Combination Radiopharmaceutical Therapy and External Beam Radiotherapy
放射药物治疗与外照射放射治疗的联合治疗
- 批准号:
10252753 - 财政年份:2020
- 资助金额:
$ 49.89万 - 项目类别:
Combination Radiopharmaceutical Therapy and External Beam Radiotherapy
放射药物治疗与外照射放射治疗的联合治疗
- 批准号:
10668390 - 财政年份:2020
- 资助金额:
$ 49.89万 - 项目类别:
Modeling Targeted Alpha Particle Therapy of Cancer
癌症靶向阿尔法粒子治疗建模
- 批准号:
8295112 - 财政年份:2012
- 资助金额:
$ 49.89万 - 项目类别:
Modeling Targeted Alpha Particle Therapy of Cancer
癌症靶向阿尔法粒子治疗建模
- 批准号:
8468664 - 财政年份:2012
- 资助金额:
$ 49.89万 - 项目类别:
Modeling Targeted Alpha Particle Therapy of Cancer
癌症靶向阿尔法粒子治疗建模
- 批准号:
8658040 - 财政年份:2012
- 资助金额:
$ 49.89万 - 项目类别:
相似国自然基金
聚多巴胺微结构对其抗氧化性能影响的单分子/单颗粒研究
- 批准号:22302189
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
高应力及颗粒破碎对水合物沉积物力学特性影响的宏细观研究与本构表征
- 批准号:52308358
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
豌豆蛋白-多糖复合微凝胶颗粒界面结构对乳液消化特性的调控机制
- 批准号:32302057
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
溶酶体靶向聚集性无药抗肿瘤纳米颗粒的研究
- 批准号:52303170
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
参连复脉颗粒通过抑制炎症反应保护CCR2-心肌驻留巨噬细胞和Cx43蛋白改善心衰室性心律失常的机制研究
- 批准号:82374407
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
Core 1: Animal Models, Pathology and Tissue
核心 1:动物模型、病理学和组织
- 批准号:
10713715 - 财政年份:2023
- 资助金额:
$ 49.89万 - 项目类别:
Ultra-Low Count Quantitative SPECT for Alpha-Particle Therapies
用于 α 粒子治疗的超低计数定量 SPECT
- 批准号:
10446871 - 财政年份:2022
- 资助金额:
$ 49.89万 - 项目类别:
Opening the Therapeutic Window for PSMA-Targeted Molecular Radiotherapy
打开 PSMA 靶向分子放射治疗的治疗窗口
- 批准号:
9920131 - 财政年份:2019
- 资助金额:
$ 49.89万 - 项目类别:
Opening the Therapeutic Window for PSMA-Targeted Molecular Radiotherapy
打开 PSMA 靶向分子放射治疗的治疗窗口
- 批准号:
10153738 - 财政年份:2019
- 资助金额:
$ 49.89万 - 项目类别: