Quantitative MRI-PET Imaging of Pulmonary Fibrosis
肺纤维化的定量 MRI-PET 成像
基本信息
- 批准号:10769999
- 负责人:
- 金额:$ 5.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-25 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:Administrative SupplementAirAnimalsBindingBiopsyCardiovascular DiseasesClinicalClinical TrialsCollagenDepositionDiagnosisDiseaseEarly DiagnosisFibrosisGalliumGoalsHigh Resolution Computed TomographyImageImaging DeviceLabelLungMagnetic ResonanceMagnetic Resonance ImagingMeasurementMeasuresMetabolismMethodsMolecularMolecular AbnormalityMonitorMorphologic artifactsMorphologyMotionOncologyOutcomeParentsPathogenicityPatient CarePatientsPhasePhotonsPhysiologyPositron-Emission TomographyPredispositionProcessProductivityPrognosisProtonsPulmonary FibrosisPulmonary function testsRotationSignal TransductionStable DiseaseTechniquesTimeTissuesVariantanatomic imagingattenuationblood fractionationcaregivingcontrast imagingdensitydrug developmentfibrotic lungfirst-in-humanidiopathic pulmonary fibrosisimprovedin vivoindium-bleomycininjuredlung imagingmolecular imagingnervous system disordernovel therapeutic interventionpulmonary functionquantitative imagingrespiratorysimulationtreatment responseuptake
项目摘要
Abstract
The administrative supplement will help the PI to maintain productivity while fulfilling her caregiving
responsibilities and achieve the goal of the parent K25 project to develop and implement an MR-PET lung
imaging tool to accurately quantify molecular abnormalities associated with pulmonary fibrosis. Idiopathic
pulmonary fibrosis (IPF) is a progressive and ultimately fatal disease with a median survival of less than 4 years
from the time of diagnosis. The treatment options remain limited due to highly variable clinical courses and poorly
understood pathogenic mechanisms. Current strategies to diagnose and monitor IPF include lung biopsy,
pulmonary function tests that measure global lung function, and anatomic imaging tools such as high-resolution
computed tomography. Yet these methods are limited in their ability to detect disease early, determine disease
activity, provide accurate prognosis or monitor the therapeutic response. Molecular imaging may be an
alternative approach that is more sensitive to detect early fibrosis and potentially capable of distinguishing new,
active fibrosis from stable disease – urgent and unmet clinical needs. Advancing the capacity of quantitative
imaging tools to determine IPF disease activity would improve patient care and facilitate much-needed drug
development. Magnetic resonance (MR) imaging can provide multiple readouts of morphology, physiology,
metabolism, and molecular processes, while positron emission tomography (PET) offers exquisite sensitivity to
interrogate pathobiology. Advanced MR and PET techniques have had major impacts on oncology,
cardiovascular diseases, and neurological disorders. However, their application to lung imaging has been
historically limited because of low proton density and the fast signal decay due to susceptibility artifacts at air-
tissue interfaces for MRI, while PET quantification remains challenging due to respiratory motion, photon
attenuation, and regional variations in tissue, air, and blood fractions. Recently, we developed a gallium(Ga)-68
labeled collagen-binding PET probe for fibrosis imaging. Ex vivo measurement showed a 5-fold higher uptake
in bleomycin-injured fibrotic lungs than controls. However, both in vivo animal and first-in-human studies showed
a PET signal difference of 35-40%. This discrepancy highlights the importance of motion, attenuation, and partial
volume correction in PET quantification. Our preliminary simulation results show that attenuation and motion
correction substantially increase the imaging contrast. Recent technical advances such as parallel imaging, ultra-
short time to echo (UTE), and rotating phase encoding have enabled advanced proton MR imaging of the lung.
Thus, simultaneous MR-PET promises to improve PET quantification by using the spatially and temporally
correlated MR information to correct for motion, partial volume, and photon attenuation effects. Capitalizing on
the technical advances in imaging and the sensitive collagen-targeted probe, this proposal aims to establish an
MR-PET lung imaging tool to accurately quantify collagen deposition in the lung of IPF patients for precise
assessment of disease activity.
抽象的
行政补充将帮助 PI 在完成护理工作的同时保持工作效率
责任并实现母 K25 项目开发和实施 MR-PET 肺的目标
准确量化与特发性肺纤维化相关的分子异常的成像工具。
肺纤维化 (IPF) 是一种进行性且最终致命的疾病,中位生存期不到 4 年
从诊断之时起,由于临床病程差异很大且效果不佳,治疗选择仍然有限。
目前诊断和监测 IPF 的致病机制包括肺活检、
测量整体肺功能的肺功能测试,以及高分辨率等解剖成像工具
然而,这些方法在早期检测疾病、确定疾病方面的能力有限。
活性、提供准确的预后或监测治疗反应可能是一种方法。
替代方法对检测早期纤维化更敏感,并且可能能够区分新的、
稳定疾病引起的活动性纤维化 - 提高定量能力。
确定 IPF 疾病活动性的成像工具将改善患者护理并促进急需的药物
磁共振(MR)成像可以提供形态学、生理学、
代谢和分子过程,而正电子发射断层扫描 (PET) 提供了精湛的灵敏度
先进的 MR 和 PET 技术对肿瘤学产生了重大影响,
然而,它们在肺部成像方面的应用一直很有限。
历史上由于质子密度低和空气中磁化率伪影导致的信号快速衰减而受到限制
MRI 的组织界面,而 PET 定量由于呼吸运动、光子
最近,我们开发了镓(Ga)-68。
用于纤维化成像的标记胶原结合 PET 探针显示出 5 倍的吸收率。
然而,体内动物研究和首次人体研究均表明,在博来霉素损伤的纤维化肺中的效果要好于对照组。
PET 信号差异为 35-40%,这种差异凸显了运动、衰减和部分的重要性。
我们的初步模拟结果表明 PET 定量中的体积校正。
校正大大提高了成像对比度,例如并行成像、超高分辨率。
短回波时间 (UTE) 和旋转相位编码使得先进的肺部质子 MR 成像成为可能。
因此,同步 MR-PET 有望通过使用空间和时间上的数据来改进 PET 定量。
关联 MR 信息以校正运动、部分体积和光子衰减效应。
成像技术的进步和敏感的胶原蛋白靶向探针,该提案旨在建立一个
MR-PET 肺部成像工具可准确量化 IPF 患者肺部胶原蛋白沉积,以实现精确定量
疾病活动评估。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Iris Yuwen Zhou其他文献
Iris Yuwen Zhou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Iris Yuwen Zhou', 18)}}的其他基金
Quantitative MRI-PET Imaging of Pulmonary Fibrosis
肺纤维化的定量 MRI-PET 成像
- 批准号:
10468922 - 财政年份:2020
- 资助金额:
$ 5.29万 - 项目类别:
Quantitative MRI-PET Imaging of Pulmonary Fibrosis
肺纤维化的定量 MRI-PET 成像
- 批准号:
10269911 - 财政年份:2020
- 资助金额:
$ 5.29万 - 项目类别:
Quantitative MRI-PET Imaging of Pulmonary Fibrosis
肺纤维化的定量 MRI-PET 成像
- 批准号:
9977573 - 财政年份:2020
- 资助金额:
$ 5.29万 - 项目类别:
Quantitative MRI-PET Imaging of Pulmonary Fibrosis
肺纤维化的定量 MRI-PET 成像
- 批准号:
10681360 - 财政年份:2020
- 资助金额:
$ 5.29万 - 项目类别:
Quantitative MRI-PET Imaging of Pulmonary Fibrosis
肺纤维化的定量 MRI-PET 成像
- 批准号:
10681360 - 财政年份:2020
- 资助金额:
$ 5.29万 - 项目类别:
相似国自然基金
锂空气电池四电子氧还原双原子位点设计与几何结构依赖机制研究
- 批准号:22309035
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
聚合物纤维膜的声至内源摩擦自充电效应及对空气过滤性能的影响
- 批准号:52373103
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
空气等离子体丝中高阶时空涡旋脉冲的产生和调控
- 批准号:12304368
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
空气中微塑料与全氟化合物复合暴露致肺损伤的毒性效应及机制
- 批准号:42377434
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
中国典型大城市交通源氨排放特征及空气质量影响的高分辨率解析
- 批准号:42305189
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Equipment and Instrument Infrastructure Improvement for the MMRRC at UC Davis
加州大学戴维斯分校 MMRRC 的设备和仪器基础设施改进
- 批准号:
10805721 - 财政年份:2023
- 资助金额:
$ 5.29万 - 项目类别:
UTHSC RBL Administrative Supplement For Antiviral Discovery & Development
UTHSC RBL 抗病毒药物发现行政补充
- 批准号:
10636200 - 财政年份:2021
- 资助金额:
$ 5.29万 - 项目类别:
UTHSC RBL Administrative Supplement For Antiviral Discovery & Development
UTHSC RBL 抗病毒药物发现行政补充
- 批准号:
10636200 - 财政年份:2021
- 资助金额:
$ 5.29万 - 项目类别:
Facility and Building System Upgrades Support for the Howard T. Ricketts Biocontainment Laboratory
为 Howard T. Ricketts 生物防护实验室提供设施和建筑系统升级支持
- 批准号:
10631368 - 财政年份:2021
- 资助金额:
$ 5.29万 - 项目类别:
Facility and Building System Upgrades Support for the Howard T. Ricketts Biocontainment Laboratory
为 Howard T. Ricketts 生物防护实验室提供设施和建筑系统升级支持
- 批准号:
10631368 - 财政年份:2021
- 资助金额:
$ 5.29万 - 项目类别: