Improving Reproducibility of Respondent Driven Sampling through Adaptive Design
通过自适应设计提高受访者驱动抽样的可重复性
基本信息
- 批准号:10761958
- 负责人:
- 金额:$ 2.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-02-15 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAttentionBehaviorBehavioralCharacteristicsCommunitiesComputer softwareDataData CollectionEligibility DeterminationFaceFoundationsFundingGenerationsGoalsGuidelinesHIVImmigrantIncentivesIndividualInjecting drug userInternetInvestmentsKnowledgeLiteratureMarkov ChainsMeasuresMethodsMonitorOutcomeParticipantPatternPersonsPopulationProbability SamplesProcessReportingReproducibilityResearchResearch PersonnelRespondentRestRiskRunningSample SizeSamplingSampling StudiesSocial NetworkSpecific qualifier valueStigmatizationSubgroupTimeUnited States National Institutes of HealthWorkblindcostdashboarddesignethnic minorityexperienceimprovedinnovationmeetingsoperationopioid usepeerpopulation healthracial minorityreal time monitoringrecruitresponserural areascreeningstatisticssuburbsuccesstooltraining opportunitytraittransgender
项目摘要
Respondent driven sampling (RDS) is a recruitment method for hard-to-sample populations that are
rare in number and/or elusive due to highly-stigmatized or illicit behaviors. For these groups, traditional
probability sampling rarely offers feasibility, because it requires prohibitively high screening costs to locate
eligible persons, and, even when eligible persons are located, their desire to hide produces false negatives.
Based on the premise that people of similar traits form some type of social networks, RDS exploits the existing
networks for recruitment and has been applied to numerous studies. What sets RDS apart from traditional
sampling is that the recruitment process is mostly controlled by participants themselves through their chain-
referral that asks participants to recruit other eligible persons from their networks. The use of organic social
networks for sampling is an innovative feature of RDS. This, however, comes with one major challenge. In
order to capitalize on RDS, participants need to cooperate with recruitment requests. Because of
noncooperation, the sample may stop growing in size, resulting in a project overrun. However, the lack of
attention to this noncooperation process in the literature makes RDS data collection progress extremely difficult
to predict at the design stage, and when faces with undesirable (and often unexpected) challenges,
researchers are forced to make unplanned design changes (e.g., offering larger incentives) on the spur of the
moment in hopes of making RDS “work”. Additionally, noncooperation leads to a violation of a critical
assumption of RDS inferences. In sum, the current practice of RDS lacks operational and statistical
reproducibility, making its scientific integrity questionable.
This study attempts to improve reproducibility of RDS by proposing Adaptive-RDS (A-RDS) as a design
framework and to provide practical tools on which researchers rely for successful implementation of RDS and
by developing A-RDS specific design guidelines and software that will allow monitoring RDS data collection
progress and improve inferences that closely mirror the true data generation process. Under A-RDS, we will
plan design adaptation strategies, including indicators and rules for adaptations prior to the data collection.
During the field work, instead of assuming the same recruitment cooperation patterns across participants, we
will predict individual-level cooperation propensities from incoming data and tailor the number and type of
coupons for each participant received based on the pre-specified rules. For doing so, data collection progress
will be closely monitored and used for making adaptation decisions. In particular, this approach is empirically
applied to PWID studies to provide data for addressing rapidly escalated issues with opioid use.
By providing a practical yet data-driven, rule-based tool to the research community, the proposed study will
boost researchers' control on the operations of RDS, leading to not only improved reproducibility but also
increased chances of meeting critical assumptions in RDS required for valid inferences.
受访者驱动抽样 (RDS) 是一种针对难以抽样人群的招募方法,这些人群
对于这些群体来说,由于受到高度侮辱或非法行为,其数量很少和/或难以捉摸。
概率抽样很少提供可行性,因为它需要极高的筛选成本来定位
合格人员,并且即使找到合格人员,他们隐藏的愿望也会产生假阴性。
基于具有相似特征的人形成某种类型的社交网络的前提,RDS 利用了现有的
RDS 与传统的招聘网络有何不同?
抽样的特点是招聘过程主要是由参与者自己通过他们的链条控制的。
要求参与者从他们的网络中招募其他合格人员的推荐 使用有机社交。
采样网络是 RDS 的一项创新功能,但这也带来了一个重大挑战。
为了利用 RDS,参与者需要配合招聘请求。
如果不合作,样本规模可能会停止增长,从而导致项目超支。
文献中对这种不合作过程的关注使得 RDS 数据收集进展极其困难
在设计阶段以及面临不良(通常是意想不到的)挑战时进行预测,
研究人员被迫做出计划外的设计改变(例如,提供更大的激励)
此外,在希望 RDS“发挥作用”的时刻,不合作会导致违反关键规定。
RDS推论的假设 总而言之,目前的RDS实践缺乏可操作性和统计性。
重复性,使其科学完整性受到质疑。
本研究试图通过提出自适应 RDS (A-RDS) 作为设计来提高 RDS 的再现性
框架并提供研究人员成功实施 RDS 所依赖的实用工具
通过开发 A-RDS 特定设计指南和软件来监控 RDS 数据收集
在 A-RDS 下,我们将取得进展并改进密切反映真实数据生成过程的推论。
在数据收集之前规划设计适应策略,包括适应指标和规则。
在实地工作中,我们没有假设相同的招聘合作模式,而是
将根据传入数据预测个人层面的合作倾向,并调整合作的数量和类型
根据预先指定的规则,每个参与者都会收到优惠券,为此,数据收集进度。
将受到密切监测并用于制定适应决策。特别是,这种方法是凭经验得出的。
应用于注射吸毒者研究,为解决阿片类药物使用迅速升级的问题提供数据。
通过向研究界提供实用且数据驱动、基于规则的工具,拟议的研究将
增强研究人员对 RDS 操作的控制,不仅提高了再现性,而且
满足有效推论所需的 RDS 关键假设的机会增加。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sung-Hee Lee其他文献
Sung-Hee Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sung-Hee Lee', 18)}}的其他基金
Network for Advancing Methodological Research in Longitudinal Studies of Aging
推进老龄化纵向研究方法论研究网络
- 批准号:
10435769 - 财政年份:2022
- 资助金额:
$ 2.77万 - 项目类别:
Network for Advancing Methodological Research in Longitudinal Studies of Aging
推进老龄化纵向研究方法论研究网络
- 批准号:
10627844 - 财政年份:2022
- 资助金额:
$ 2.77万 - 项目类别:
Improving Reproducibility of Respondent Driven Sampling through Adaptive Design
通过自适应设计提高受访者驱动抽样的可重复性
- 批准号:
10552018 - 财政年份:2019
- 资助金额:
$ 2.77万 - 项目类别:
Improving Reproducibility of Respondent Driven Sampling through Adaptive Design - Diversity Supplement
通过自适应设计提高受访者驱动抽样的可重复性 - 多样性补充
- 批准号:
10631522 - 财政年份:2019
- 资助金额:
$ 2.77万 - 项目类别:
Exploring Design Aspects of Web-Based Respondent-Driven Sampling for Racial/Ethnic Minorities
探索针对少数种族/族裔的基于网络的受访者驱动抽样的设计方面
- 批准号:
9924497 - 财政年份:2019
- 资助金额:
$ 2.77万 - 项目类别:
Improving Reproducibility of Respondent Driven Sampling through Adaptive Design
通过自适应设计提高受访者驱动抽样的可重复性
- 批准号:
10374744 - 财政年份:2019
- 资助金额:
$ 2.77万 - 项目类别:
相似国自然基金
儿童青少年注意力的行为与脑发育关键指标研究
- 批准号:62177035
- 批准年份:2021
- 资助金额:47 万元
- 项目类别:面上项目
自我护理模式下老年慢性病患数字化个人健康信息认知行为及其注意力和脑神经机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于注意力机制的多视角人群场景下的异常行为识别和理解
- 批准号:
- 批准年份:2019
- 资助金额:36 万元
- 项目类别:地区科学基金项目
非工作上网行为对知识型员工工作绩效的影响机制及组织对策研究
- 批准号:71901201
- 批准年份:2019
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
基于时空内部注意力和动作聚合双流网络模型的新生儿全身运动评估
- 批准号:61906022
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Effects of tACS on alcohol-induced cognitive and neurochemical deficits
tACS 对酒精引起的认知和神经化学缺陷的影响
- 批准号:
10825849 - 财政年份:2024
- 资助金额:
$ 2.77万 - 项目类别:
The neural underpinnings of speech and nonspeech auditory processing in autism: Implications for language
自闭症患者言语和非言语听觉处理的神经基础:对语言的影响
- 批准号:
10827051 - 财政年份:2024
- 资助金额:
$ 2.77万 - 项目类别:
Mechanism of epidermal coordination during development and regeneration in zebrafish
斑马鱼发育和再生过程中表皮协调机制
- 批准号:
10643060 - 财政年份:2023
- 资助金额:
$ 2.77万 - 项目类别: