Development of an innovative approach for in situ treatment of PCB impacted sediments by microbial bioremediation
开发一种通过微生物生物修复原位处理受 PCB 影响的沉积物的创新方法
基本信息
- 批准号:10760823
- 负责人:
- 金额:$ 64.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAerobicAmendmentAnaerobic BacteriaAreaBacteriaBiological AssayBiological AvailabilityBioreactorsBioremediationsCarbonCell CountCellsCollaborationsCommunitiesComplexConsumptionCost AnalysisCoupledDataDevelopmentEngineeringEnsureEnvironmentEnvironmental ImpactEquipment and supply inventoriesExcisionFishesFood WebsFreeze DryingGoalsGrowthGrowth FactorHabitatsHealthHumanIn SituIndustrializationLegal patentMethodologyMethodsMicrobeMonitorMunicipalitiesNational Research CouncilOxidation-ReductionPerformancePhasePolychlorinated BiphenylsPrivatizationProcessProductionReportingReproducibilityResearchResearch PersonnelRiskScientistShippingSiteSmall Business Innovation Research GrantSodium ChlorideSourceSuperfundSurfaceSystemTechniquesTechnologyTechnology TransferTestingToxic effectUnited StatesUnited States Environmental Protection AgencyUniversitiesWaterbioaccumulationcommercializationcommercially viable technologycontaminated sedimentcostcost effectivecost effective treatmentdechlorinationdensityeffectiveness analysiseffectiveness evaluationefficacy evaluationfield studyfundamental researchimprovedinnovationinterestlandfillmanufacturing scale-upmicrobialmicroorganismminimally invasivenovelpollutantpreservationreceptorremediationrestorationscale upsuccesssuperfund sitetreatment site
项目摘要
PROJECT SUMMARY
Polychlorinated biphenyls (PCBs) are one of the most problematic of legacy pollutants. Persistent and mobile in
the environment, PCBs are largely ubiquitous in depositional sediments of aquatic systems in industrial regions
of the United States. Their relatively high toxicity and bioaccumulation potential cause elevated risk to both
human and ecological receptors. As such, PCBs are often the primary risk driver at Superfund sediment sites.
Common practices for remediating PCB-impacted sediments are costly, often involving the physical removal of
contaminated sediments and disposal of the sediments in a confined landfill, and/or installation of a multi-layered
engineered cap over the contaminated sediments.
An emerging strategy for effectively removing PCBs from sediments in situ is the use of bio-amended activated
carbon (AC), which employs AC pellets inoculated with enriched cultures of PCB-degrading microbes. The co-
investigators of this proposed research have performed the fundamental research behind the use of bio-
amended AC for remediation of PCBs in sediment and have patented commercially-viable methods for growing,
inoculating, and delivering the bioamended AC pellets to sediments. The prior Phase I project, a collaboration
between university scientists and RemBac Environmental, addressed two factors that limit the ready use of this
technology for large, multi-acre sites: 1) the large-scale growth, storage, and transport of anaerobic PCB
degrading bacteria, and; 2) large-scale methods for inoculating and deploying the bioamended AC pellets. The
PCB halorespiring anaerobe was successfully scaled up to the maximum density in a bench-scale bioreactor,
methods were developed for storage of cells by lyophilization and two approaches were successfully tested for
the continuous, uniform inoculation of high volumes of AC pellets with the PCB-degrading microorganisms.
The proposed research will advance the technology towards commercialization by demonstrating the efficacy of
the methods developed in Phase I for scaled up production at a commercial facility, and perform a pilot-scale
demonstration of the technology at the New Bedford Harbor Superfund Site (NBHSS). PCB degrading
microorganisms will be scaled up to cell numbers sufficient to treat over 1 acre, and AC pellets will be inoculated
on-site using methods developed in Phase I to assess the efficacy of the application methods in a tidal marsh.
PCB levels in sediment and water will be assayed after one year to 1) assess the effectiveness and
environmental impact of the treatment, and 2) assess the stability of the treatment with tidal activity. Finally, a
cost analysis conducted for the entire process to assess the commercial viability of bio-amended AC as a cost-
effective treatment for PCB impacted sites. The proposed research is anticipated to result in a direct transfer of
this technology from pilot-scale to full commercial viability through an active collaboration with the U.S.
Environmental Protection Agency (USEPA), U.S. Army Corps of Engineers (USACE), engineering consultants,
and Superfund site stakeholders.
项目概要
多氯联苯 (PCB) 是最成问题的遗留污染物之一。持久且可移动
在环境方面,多氯联苯在工业区水生系统的沉积沉积物中普遍存在
美国的。它们相对较高的毒性和生物蓄积潜力会导致两者的风险增加
人类和生态受体。因此,多氯联苯通常是超级基金沉积物场地的主要风险驱动因素。
修复受 PCB 影响的沉积物的常见做法成本高昂,通常涉及物理去除
受污染的沉积物以及在密闭垃圾填埋场中处置沉积物,和/或安装多层
在受污染的沉积物上盖上工程盖。
有效去除沉积物中多氯联苯的一种新兴策略是使用生物改良的活性物质
碳 (AC),采用接种了 PCB 降解微生物富集培养物的 AC 颗粒。该共同
这项拟议研究的研究人员已经进行了使用生物技术背后的基础研究
修正了用于修复沉积物中 PCB 的 AC,并拥有商业上可行的种植方法专利,
接种并将生物改良的活性炭颗粒输送到沉积物中。之前的一期项目,是一个合作项目
大学科学家和 RemBac Environmental 之间的合作解决了限制该技术立即使用的两个因素
适用于大型、多英亩场地的技术:1)厌氧 PCB 的大规模生长、储存和运输
降解细菌; 2)大规模接种和部署生物改良AC颗粒的方法。这
PCB 嗜盐厌氧菌已在小型生物反应器中成功放大至最大密度,
开发了通过冻干保存细胞的方法,并成功测试了两种方法
用 PCB 降解微生物连续、均匀地接种大量 AC 颗粒。
拟议的研究将通过证明其功效来推动该技术走向商业化
第一阶段开发的用于在商业设施扩大生产的方法,并进行中试规模
在新贝德福德港超级基金站点 (NBHSS) 展示该技术。 PCB降解
微生物将扩大到足以处理超过 1 英亩的细胞数量,并且将接种 AC 颗粒
现场使用第一阶段开发的方法来评估潮汐沼泽中应用方法的有效性。
沉积物和水中的 PCB 含量将在一年后进行测定,以 1) 评估有效性和
处理的环境影响,以及 2) 评估处理对潮汐活动的稳定性。最后,一个
对整个过程进行成本分析,以评估生物改良活性炭作为成本的商业可行性
对 PCB 受影响部位进行有效处理。拟议的研究预计将导致直接转移
通过与美国的积极合作,这项技术从试点规模到完全商业可行性
环境保护局 (USEPA)、美国陆军工程兵团 (USACE)、工程顾问、
和超级基金网站利益相关者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Craig Bennett Amos其他文献
Craig Bennett Amos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Craig Bennett Amos', 18)}}的其他基金
Development of an innovative approach for in situ treatment of PCB impacted sediments by microbial bioremediation
开发一种通过微生物生物修复原位处理受 PCB 影响的沉积物的创新方法
- 批准号:
10077158 - 财政年份:2020
- 资助金额:
$ 64.49万 - 项目类别:
相似国自然基金
基于PXDN-周细胞-血管渗漏轴探讨有氧运动改善肺血管重构机制研究
- 批准号:82370422
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
NEDD4介导IGFBP7泛素化参与有氧运动抑制泛凋亡改善心肌缺血再灌注损伤的机制研究
- 批准号:82302873
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
有氧康复运动抑制心外膜脂肪组织Th17细胞分化改善HFpEF所致心房颤动实验研究
- 批准号:82372581
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
代谢产物丁酸介导的PKM2乳酸化修饰调控小胶质细胞极化参与有氧运动发挥脑梗死后神经保护作用的机制研究
- 批准号:82302861
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
有氧运动依赖ABCG1调节的GSK-3β/Nrf2/ARE抗氧化机制预防化疗药物5氟尿嘧啶诱导的血管内皮损伤机制探索
- 批准号:82360608
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Exercising language: Behavioral and neurophysiological changes after high-intensity exercise training in post-stroke aphasia.
运动语言:中风后失语症高强度运动训练后的行为和神经生理变化。
- 批准号:
10862024 - 财政年份:2023
- 资助金额:
$ 64.49万 - 项目类别:
Investigating the effects of psychosocial stress on laryngeal microbiology and epithelial barrier integrity
研究社会心理压力对喉部微生物学和上皮屏障完整性的影响
- 批准号:
10824680 - 财政年份:2023
- 资助金额:
$ 64.49万 - 项目类别:
Exploring the Role of Nitrogen Metabolism in Cancer
探索氮代谢在癌症中的作用
- 批准号:
10737792 - 财政年份:2023
- 资助金额:
$ 64.49万 - 项目类别:
ActiveCBT for depression: Transforming treatment through exercise priming
ActiveCBT 治疗抑郁症:通过运动启动改变治疗方法
- 批准号:
10629807 - 财政年份:2023
- 资助金额:
$ 64.49万 - 项目类别:
Metabolism during the Progression of Photoreceptor Degeneration
感光器退化过程中的代谢
- 批准号:
10638849 - 财政年份:2023
- 资助金额:
$ 64.49万 - 项目类别: