Enabling Subcutaneous Delivery of Therapeutic Monoclonal Antibodies via Hydrogel Microparticles
通过水凝胶微粒皮下输送治疗性单克隆抗体
基本信息
- 批准号:10761250
- 负责人:
- 金额:$ 32.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlginatesAntibodiesAutomobile DrivingBiological AvailabilityBlood capillariesBrown AlgaeCellsCertificationCharacteristicsChargeClinicalConsumptionDevelopmentDiameterElectrostaticsEncapsulatedEnzyme-Linked Immunosorbent AssayForce of GravityFormulationFrequenciesFutureGenerationsGood Manufacturing ProcessHomeHospital AdministrationHospitalsHydrogelsHydrophobicityImmunoglobulin GIn VitroInjectableInjectionsIntravenousIonsLifeLiquid substanceMarketingMeasuresMechanicsMedical Care CostsMethodsMolecular WeightMonoclonal AntibodiesMusNatureNeedlesOilsPainParticle SizePatientsPharmaceutical PreparationsPhasePolymersPolysaccharidesPrintingProcessProductionPropertyProteinsRouteSafetySamplingSelf AdministrationSerumSmall Business Innovation Research GrantSpecificitySubcutaneous InjectionsSurfaceTechnologyTestingTherapeuticTherapeutic Monoclonal AntibodiesTimeTravelVariantViscosityVisualbasebevacizumabbiomaterial compatibilityclinical carecostcrosslinkdesigndosagefluid flowimmunogenicityimprovedin vitro testingin vivointravenous injectionirritationmanufacturemanufacturing technologymechanical propertiesmetermonoclonal antibody productionmouse modelpain reductionparticleporous hydrogelpreservationskillssmall moleculestandard of caresubcutaneoussurfactanttechnology platformtherapeutic protein
项目摘要
ABSTRACT
Monoclonal antibodies (mAbs) provide unchallenged specificity compared to small molecules, representing a
growing market of 150+ billion dollars. Due to their structural complexity and poor stability, however, they remain
difficult to formulate at high concentrations, making intravenous (IV) delivery of mAbs the “gold standard”. IV
injections present major drawbacks, such as patient discomfort, long injection times, and high medical costs
associated with in-hospital administration. Subcutaneous (SC) delivery is a convenient route of administration
for large molecules, as it allows for rapid injections (seconds), requires minimal skills (self-injection), and allows
for systemic delivery. It remains an open challenge to reformulate mAbs to a SC form. Most mAbs requires large
dosage to be effective (>300 mg), and SC administration volumes are constrained to only 1-2 ml, hundreds of
times smaller than typical IV formulations
SC injections using hydrogel microparticles (HMP) offer a promising method for encapsulating and delivering
protein-based drugs. The composition, size, and mechanical properties of HMPs can be widely tuned to facilitate
their injection through needles for subcutaneous delivery. Alginate-based MP are becoming increasingly popular
due to their rheological properties and high biocompatibility. Additionally, the anionic nature of alginate enables
electrostatic entrapment of cationic proteins independently of the hydrogel porosity, making it a candidate for
hydrogel-based antibody formulations. However, current manufacturing technologies are limited to low
concentration of polymer (<5%), and low cargo loading, typically below 30 mg/ml for antibodies, resulting in
inadequate mechanical and therapeutic properties.
Through the support of this Small Business Innovation Research (SBIR) Phase I project, we aim at improving
clinical care of millions of patients by reformulating IV-delivered mAbs to a SC form, meaning patients could
administer their life saving drugs with reduced pain and discomfort, at a fraction of the cost.
We plan to leverage Acoustophoretic Printing (AP) to generate alginate MP to stabilize highly concentrated mAbs
formulation. This platform technology enables microparticle generation under modest shear forces without the
need for a hydrophobic carrier fluid, thereby protecting the valuable cargo and minimizing contamination. The
technology features: high bio-compatibility with no oil or surfactant required, making this technology particularly
suitable for large proteins; high concentrations of cargo (>100mg/ml), including alginate (>10%); low particle size
variation (coefficient of variation of 1-3%) reducing costly sieving steps, consistency in cargo encapsulation and
delivery - hence significantly improving Good Manufacturing Practices - even at extreme loading.
This project aims to: (1) Manufacture mAbs loaded hydrogel-based microparticles for SC delivery and
characterize them in-vitro, including encapsulation efficiency, release profile, and injectability. (2) Conduct In vivo
study to investigate safety, bioavailability, and bioactivity of the MP-based formulations in murine models.
抽象的
与小分子相比,单克隆抗体 (mAb) 具有无可比拟的特异性,代表了
然而,由于结构复杂且稳定性差,它们仍然存在,市场规模已达 150 多亿美元。
由于难以配制高浓度,因此静脉注射 (IV) 成为单克隆抗体的“金标准”。
注射存在主要缺点,例如患者不适、注射时间长和医疗费用高
与院内给药相关的皮下(SC)给药是一种方便的给药途径。
对于大分子,因为它允许快速注射(秒),需要最少的技能(自我注射),并且允许
将单克隆抗体重新配制为 SC 形式仍然是一个公开的挑战。
有效剂量(> 300 mg),SC 给药体积仅限于 1-2 ml,数百个
比典型静脉注射制剂小几倍
使用水凝胶微粒 (HMP) 的 SC 注射提供了一种有前途的封装和递送方法
HMP 的组成、大小和机械特性可以广泛调整以促进
通过针头注射以海藻酸盐为基础的 MP 越来越受欢迎。
此外,由于其流变特性和高生物相容性,海藻酸盐的阴离子性质使其能够实现。
水凝胶孔隙度的阳离子独立蛋白质的静电捕获,使其成为
然而,基于水凝胶的抗体制剂目前的制造技术仅限于低水平。
聚合物浓度(<5%)和低负载量(抗体通常低于 30 mg/ml),导致
机械和治疗性能不足。
通过小企业创新研究 (SBIR) 第一阶段项目的支持,我们的目标是改善
通过将静脉注射的单克隆抗体重新配制为 SC 形式,为数百万患者提供临床护理,这意味着患者可以
以极低的成本管理救生药物,减少疼痛和不适。
我们计划利用声泳印刷 (AP) 生成藻酸盐 MP 来稳定高浓度的 mAb
该平台技术能够在适度的剪切力下生成微粒,而无需
需要疏水性载液,以保护贵重货物并最大限度地减少污染。
技术特点:生物相容性高,无需油或表面活性剂,使该技术特别
适用于大蛋白;高浓度货物(>100mg/ml),包括海藻酸盐(>10%);
变化(变化系数为 1-3%)减少了昂贵的筛分步骤,货物封装的一致性和
交付 - 从而显着改善良好制造规范 - 即使在极端负载下。
该项目的目标是:(1) 制造负载单克隆抗体的水凝胶微粒,用于 SC 输送和
(2) 体内进行
研究旨在调查基于 MP 的制剂在小鼠模型中的安全性、生物利用度和生物活性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniele Foresti其他文献
Daniele Foresti的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
用于肥厚型心肌病介入治疗的凝血酶-海藻酸盐复合微球消融剂制备机制及其作用机制研究
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:
组织工程用氧化海藻酸盐/聚丙烯酰胺互穿网络均相凝胶的构建、结构与性能研究
- 批准号:
- 批准年份:2019
- 资助金额:41 万元
- 项目类别:地区科学基金项目
金属离子诱导海藻酸盐凝胶多尺度微观结构及外场下的演变机制
- 批准号:51803101
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
基于两亲性海藻酸盐的载药乳液的微观机制和多尺度模拟
- 批准号:21706045
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
3D打印三相一体化支架缓释DMOG激活HIF-1α信号通路治疗骨软骨缺损
- 批准号:51673212
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
相似海外基金
Extracellular Matrix Impacts Angiogenesis and Growth Plate Repair
细胞外基质影响血管生成和生长板修复
- 批准号:
10668056 - 财政年份:2023
- 资助金额:
$ 32.45万 - 项目类别:
Encapsulation of mesenchymal stromal cells in engineered microgels for resolution of lung fibrosis
将间充质基质细胞封装在工程微凝胶中以解决肺纤维化
- 批准号:
10372942 - 财政年份:2019
- 资助金额:
$ 32.45万 - 项目类别:
Material-guided delivery and local activation of bioorthogonal prodrugs
生物正交前药的材料引导递送和局部激活
- 批准号:
10238760 - 财政年份:2019
- 资助金额:
$ 32.45万 - 项目类别:
Material-guided delivery and local activation of bioorthogonal prodrugs
生物正交前药的材料引导递送和局部激活
- 批准号:
9907002 - 财政年份:2019
- 资助金额:
$ 32.45万 - 项目类别:
Encapsulation of mesenchymal stromal cells in engineered microgels for resolution of lung fibrosis
将间充质基质细胞封装在工程微凝胶中以解决肺纤维化
- 批准号:
10598507 - 财政年份:2019
- 资助金额:
$ 32.45万 - 项目类别: