Untethered high channel count electrophysiology for freely-moving animals
适用于自由活动动物的不受束缚的高通道数电生理学
基本信息
- 批准号:10761109
- 负责人:
- 金额:$ 51.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAlzheimer&aposs DiseaseAnimal BehaviorAnimalsArchitectureBRAIN initiativeBehaviorBehavioralBluetoothBrainBrain DiseasesCellsCognitionComplexCustomDataDevelopmentElectrodesElectrophysiology (science)EngineeringEnsureEnvironmentEpilepsyFundingGenerationsGoalsHeadImageIndividualLearningMammalsMemoryMental DepressionNeurobiologyNeurofibrillary TanglesNeurologicNeuronsNoiseParkinson DiseasePerformancePeripheralPhasePilot ProjectsPopulationProductionResearch PersonnelResolutionRodentSamplingScientific InquiryServicesSiliconSmall Business Innovation Research GrantSortingStreamSurfaceSystemTechniquesTechnologyTelemetryTestingThinnessTimeTissuesWeightWillowWireless TechnologyWritinganalogbehavioral studycostdata acquisitiondesigndigitaldriving forceeffective therapyexperimental studyimprovedin vivoinnovationlight weightmanufacturemillisecondneuralneural circuitneural stimulationneuronal circuitrynovelpower consumptionreal time monitoringresearch facilitysensortheoriestoolwirelesswireless fidelity
项目摘要
PROJECT SUMMARY
Recording whole-brain activity with single neuron resolution and millisecond timescale precision is crucial to
understanding how individual cells and complex neural circuits interact in both time and space. Simultaneous
recording and stimulation of large populations of neurons distributed throughout the brain are needed to
rigorously evaluate theories of neural computation at the cellular level in mammals, and extended longitudinal
recordings are required to establish general principles for neuronal circuits/dynamics and how complex
neuronal activity relates to behavior, both to further our fundamental understanding of the brain, but also to
surface underlying causes of neurological and psychiatric conditions such as Alzheimer’s, Parkinson’s, TBI,
epilepsy, and depression, and to aid development of novel and more effective treatments.
These are key goals of the BRAIN initiative, and the driving force behind LeafLabs' Willow, an
electrophysiology recording system designed to take advantage of novel, close-packed 1000-channel silicon
probes originally developed by the Synthetic Neurobiology Group at MIT. These ultra-high-channel-count
probes allow for more neurons to be recorded simultaneously, opening up new lines of scientific inquiry, and
the dense packing of the electrodes permits spatial oversampling of the neurons, allowing for automated spike
sorting techniques with greatly increased capability for tracking individual units.
Additionally, LeafLabs' Catkin, a custom 1000 channel neurosensing IC chip (filter, amplification, multiplexing,
and analog-digital conversion) has been developed to integrate with these probes, resulting in a
probe/headstage combo suitable for use in freely-moving electrophysiology experiments that reduces size,
weight, and cost each by a factor of 10 compared to commercially available headstages. Currently, the Catkin
probe/headstage combo is tethered to the Willow DAQ system by an ultra thin and lightweight cable (a single
shielded 32 AWG twisted pair), resulting in a system ideal for many prolonged freely moving experiments.
However, in certain behavioral setups, even a lightweight, minimalist cable is undesirable. For example,
because the high data rates are incompatible with approaches used to manage the cable tether
(commutators), researchers must occasionally intervene to de-tangle cables; or, the presence of a tether may
result in altered behavior from animals. To address these needs, this application proposes the development of
a first-of-its-kind fully untethered 1000-channel-simultaneous 30kHz in-vivo electrophysiological
recording module, to be made available as a lightweight add-on to the extant Willow system.
项目概要
以单神经元分辨率和毫秒时间尺度精度记录全脑活动对于
了解单个细胞和复杂的神经回路如何在时间和空间上同时相互作用。
需要对分布在大脑中的大量神经元进行记录和刺激
严格评估哺乳动物细胞水平的神经计算理论,并扩展纵向
需要录音来建立神经回路/动力学的一般原则以及复杂程度
神经活动与行为相关,既可以加深我们对大脑的基本理解,也可以
神经和精神疾病的表面根本原因,例如阿尔茨海默病、帕金森病、创伤性脑损伤、
癫痫和抑郁症,并帮助开发新颖且更有效的治疗方法。
这些是 BRAIN 计划的关键目标,也是 LeafLabs 的 Willow(一种
电生理学记录系统旨在利用新颖的密排 1000 通道硅
探针最初由麻省理工学院的合成神经生物学小组开发。
探针允许同时记录更多的神经元,开辟新的科学探究领域,并且
电极的密集排列允许对神经元进行空间过采样,从而实现自动尖峰
大大增强了跟踪单个单元的能力的分拣技术。
此外,LeafLabs 的 Catkin 是一款定制 1000 通道神经传感 IC 芯片(滤波器、放大、复用、
和模数转换)已被开发用于与这些探头集成,从而产生
探头/探头组合适用于自由移动的电生理学实验,可减小尺寸,
与目前市售的 Catkin 探头相比,重量和成本降低了 10 倍。
探头/探头组合通过超薄轻质电缆(单根)连接到 Willow DAQ 系统
屏蔽 32 AWG 双绞线),使系统成为许多长时间自由移动实验的理想选择。
然而,在某些行为设置中,即使是轻质、简约的电缆也是不可取的,例如,
因为高数据速率与用于管理电缆系链的方法不兼容
(换向器),研究人员必须偶尔进行干预以理清电缆;或者,系绳的存在可能会导致
为了满足这些需求,该应用建议开发
首个完全不受限制的 1000 通道同步 30kHz 体内电生理学
记录模块,将作为现有 Willow 系统的轻量级附加组件提供。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John L Sherwood其他文献
John L Sherwood的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John L Sherwood', 18)}}的其他基金
High channel count electrophysiology and data processing for freely-moving animals
自由移动动物的高通道数电生理学和数据处理
- 批准号:
10487568 - 财政年份:2017
- 资助金额:
$ 51.98万 - 项目类别:
High channel count electrophysiology and data processing for freely-moving animals
自由移动动物的高通道数电生理学和数据处理
- 批准号:
10680473 - 财政年份:2017
- 资助金额:
$ 51.98万 - 项目类别:
High channel count electrophysiology and data processing for freely-moving animals
自由移动动物的高通道数电生理学和数据处理
- 批准号:
10680473 - 财政年份:2017
- 资助金额:
$ 51.98万 - 项目类别:
High channel count electrophysiology and data processing for freely-moving animals
自由移动动物的高通道数电生理学和数据处理
- 批准号:
10385193 - 财政年份:2017
- 资助金额:
$ 51.98万 - 项目类别:
相似国自然基金
基于神经退行性疾病前瞻性队列的新烟碱类杀虫剂暴露对阿尔茨海默病的影响及作用机制研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
基于miRNA介导ceRNA网络调控作用的防治阿尔茨海默病及认知障碍相关疾病药物的发现研究
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
LMTK1调控核内体转运介导阿尔茨海默病神经元Reserve机制研究
- 批准号:81903703
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
MBP酶切L1CAM介导的线粒体自噬在阿尔茨海默病中的作用和机制
- 批准号:81901296
- 批准年份:2019
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
基于自组装多肽纳米探针检测蛋白标志物用于阿尔茨海默病精准诊断的研究
- 批准号:31900984
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
- 批准号:
10676358 - 财政年份:2024
- 资助金额:
$ 51.98万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 51.98万 - 项目类别:
Investigate the utility of APLP1 as an endosomal biomarker for Alzheimer's Disease in Down Syndrome
研究 APLP1 作为唐氏综合症阿尔茨海默氏病内体生物标志物的效用
- 批准号:
10727134 - 财政年份:2023
- 资助金额:
$ 51.98万 - 项目类别: