Discovery and development of OGG1 activators as precision drugs for modification of Alzheimer's disease progression.
发现和开发 OGG1 激活剂作为改变阿尔茨海默病进展的精准药物。
基本信息
- 批准号:10759620
- 负责人:
- 金额:$ 30.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-18 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:APP-PS1AcetylcholinesteraseAdultAffectAllosteric SiteAlzheimer&aposs DiseaseAlzheimer&aposs disease brainAlzheimer&aposs disease modelAlzheimer&aposs disease pathologyAlzheimer&aposs disease patientAlzheimer&aposs disease therapeuticAlzheimer&aposs disease therapyAmyloidBase Excision RepairsBindingBioenergeticsBiologicalBiological AssayBiological MarkersBrainBrain DiseasesCause of DeathCell DeathCell Death InductionCell NucleusCell SurvivalCellsCessation of lifeChemistryChronicCirculationClinicalCognitionCognitive deficitsCollaborationsDNADNA RepairDNA glycosylaseDNA lesionDeacetylationDementiaDevelopmentDiseaseDisease ProgressionDisease modelDown-RegulationExcisionExerciseFailureGenetic PolymorphismGuanineHistone DeacetylaseHumanIn VitroInduced pluripotent stem cell derived neuronsInflammationInflammatoryLeadLesionLibrariesLife ExpectancyLocomotionMachine LearningMarketingMeasurementMediatingMedicineMemory impairmentMetabolicMexican AmericansMitochondriaMitochondrial DNAMonitorMotionMusN-Methyl-D-Aspartate ReceptorsNeuronsOGG1 geneOralOral MedicineOxidative StressPathogenesisPathogenicityPathologicPathway interactionsPatientsPharmaceutical ChemistryPharmaceutical PreparationsPharmacodynamicsPharmacologic SubstancePhasePlasmaPrefrontal CortexPropertyProteinsPublicationsPublishingQuality ControlQuality of lifeReactionReactive Oxygen SpeciesRespirationRespiratory ChainSafetySmall Business Innovation Research GrantStructureTestingToxinZebrafishage relatedblood-brain barrier penetrationcandidate selectionclinical candidatecognitive functioncost effectivedrug modificationeconomic costenzyme pathwayimprovedin vivoin vivo evaluationinduced pluripotent stem cellloss of functionmembermetermitochondrial dysfunctionmouse modelmutant mouse modelneuroprotectionnew therapeutic targetnext generationnovelnovel therapeutic interventionoverexpressionoxidationoxidative damagepharmacologicpre-clinicalprecision drugspreclinical developmentpreservationpreventrecruitreduce symptomsrepairedresearch clinical testingresponsesafety assessmentscreeningsmall moleculesocioeconomicsstandard of caresuccesstargeted treatmenttau Proteinstranscriptometranscriptomics
项目摘要
PROJECT SUMMARY
Alzheimer’s disease (AD) is a leading cause of dementia with 1 in 85 adults affected worldwide. The lack of
disease-modifying therapies or mechanistic biomarkers to reliably monitor treatment are key unmet needs.
Current standard of care (SoC), i.e., acetylcholinesterase or NMDA receptor blockade, provides limited
symptom-relief. Current evidence indicates that an inter-related, mechanistic triad is formed in AD by oxidative
stress (OxS), mitochondrial (mt) dysfunction and inflammation. This pathological trio occurs early and is
fundamental to AD. OxS primarily arises from unproductive mt-respiration and promotes mt-dysfunction.
Oxidized guanine (8-oxo-dG) is the most prominent oxidative and mutagenic DNA lesion, particularly in mtDNA.
Excessive amounts signify insufficient repair. Improving mt-function by enhancing mtDNA repair will modify AD
progression. Repair of 8-oxo-dG is an indispensable, mitochondrial quality control mechanism that largely occurs
by base excision repair. Accumulation of 8-oxo-dG leads to double-stranded breaks which cause mtDNA
deletions and fragmentation and culminates in loss of bioenergetic capacity and cell viability, a prominent AD
pathological feature. Fragmented mtDNA is expulsed to stimulate multiple proinflammatory pathways. Although
there are mt-approaches with potential for AD treatment, there are presently no therapies that target base
excision repair of oxidative damage. Luciole Pharmaceuticals’ approach is to improve DNA repair using small
molecules to enhance the catalytic activity of the DNA glycosylase, OGG1. In the first step of base excision
repair, OGG1 excises 8-oxo-dG while recruiting other pathway enzymes to complete repair in the nucleus and
mitochondria. Increasing OGG1 activity will result in the efficient removal of 8-oxo-dG to prevent strand breaks.
Ultimately, energetics and inflammation will improve to preserve neuronal function and slow AD progression.
Recent publications using either physio- or pharmacological approaches in AD murine models support our
hypothesis. Building on our previous success in discovering novel OGG1 activators (OAAs), we will develop
“first-in-class” orally available, small molecule OAAs that are differentiated from AD SoC drugs to modify AD and
advance patient quality of life in a multi-billion-dollar market. In this Phase I SBIR project, we plan to progress
OAA chemistry and in vitro screening assays to improve OAA potency and in vivo efficacy. If successful, our
Phase II project will include; 1) advancing a lead to candidate selection, 2) testing optimized compounds for
mtDNA expulsion in challenged human-derived iPSCs and murine AD models, 3) early safety assessment and
4) generating a novel mutant mouse model for testing the candidate compound.
项目概要
阿尔茨海默病 (AD) 是导致痴呆症的主要原因,全世界每 85 名成年人中就有 1 人受到影响。
疾病缓解疗法或可靠监测治疗的机械生物标志物是未满足的关键需求。
当前的护理标准 (SoC),即乙酰胆碱酯酶或 NMDA 受体阻断,提供的治疗效果有限
目前的证据表明,AD 中通过氧化作用形成了一个相互关联的机械三联征。
应激(OxS)、线粒体(mt)功能障碍和炎症这三个病理因素很早就发生,并且是很常见的。
OxS 是 AD 的基础,主要源自非生产性 mt 呼吸并促进 mt 功能障碍。
氧化鸟嘌呤 (8-oxo-dG) 是最显着的氧化和诱变 DNA 损伤,特别是在线粒体 DNA 中。
过量意味着修复不足通过增强 mtDNA 修复来改善 mt 功能将改变 AD。
8-oxo-dG 的修复是一种不可或缺的、大量发生的线粒体质量控制机制。
通过碱基切除修复,8-oxo-dG 的积累导致双链断裂,从而导致 mtDNA。
缺失和碎片,最终导致生物能能力和细胞活力的丧失,这是一种突出的AD
碎片化的线粒体DNA被排出以刺激多种促炎途径。
存在具有治疗 AD 潜力的 mt 方法,但目前还没有针对碱基的疗法
Luciole Pharmaceuticals 的方法是利用小分子物质来改善 DNA 修复。
分子增强 DNA 糖基化酶 OGG1 的催化活性,在碱基切除的第一步中。
修复过程中,OGG1 切除 8-oxo-dG,同时招募其他途径酶来完成细胞核内的修复,
增加 OGG1 活性将有效去除 8-oxo-dG,以防止链断裂。
最终,能量和炎症将得到改善,以保持神经功能并减缓 AD 进展。
最近在 AD 小鼠模型中使用生理或药理学方法的出版物支持我们的研究
基于我们之前发现新型 OGG1 激活剂 (OAA) 的成功,我们将开发出假设。
“一流”的口服小分子 OAA,与 AD SoC 药物不同,可改变 AD 和
在价值数十亿美元的先进市场中提高患者的生活质量 在这一阶段的 SBIR 项目中,我们计划取得进展。
OAA 化学和体外筛选测定可提高 OAA 效力和体内功效如果成功,我们的。
第二阶段项目将包括:1) 推进候选药物选择,2) 测试优化化合物
受挑战的人源 iPSC 和小鼠 AD 模型中的 mtDNA 排出,3) 早期安全评估和
4) 生成用于测试候选化合物的新型突变小鼠模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
WILLIAM L RUMSEY其他文献
WILLIAM L RUMSEY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
伪旋毛虫乙酰胆碱酯酶破坏肠道ILC2s的ChAT-ACh通路实现免疫逃逸的机制研究
- 批准号:32302960
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
元宝枫种子中抑制乙酰胆碱酯酶活性成分的高效发现及其作用机理研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠神经元芳香烃受体/乙酰胆碱酯酶信号通路介导的青黛肠道不良反应研究
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
乙酰胆碱酯酶在氧化应激诱导视网膜色素上皮细胞变性凋亡中的作用机制
- 批准号:81960178
- 批准年份:2019
- 资助金额:33 万元
- 项目类别:地区科学基金项目
新型溴代阻燃剂五溴甲苯对斑马鱼的神经毒性效应及分子机制研究
- 批准号:21906181
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Novel behavioral screening tool for therapeutics against organophosphorus agents
用于有机磷药物治疗的新型行为筛选工具
- 批准号:
10631009 - 财政年份:2023
- 资助金额:
$ 30.35万 - 项目类别:
Disrupting the mosquito larval midgut using novel pH responsive compounds
使用新型 pH 响应化合物破坏蚊子幼虫中肠
- 批准号:
10722596 - 财政年份:2023
- 资助金额:
$ 30.35万 - 项目类别:
Targeted ColQ gene therapy for Congenital Myasthenic Syndromes
先天性肌无力综合征的靶向 ColQ 基因治疗
- 批准号:
10602652 - 财政年份:2023
- 资助金额:
$ 30.35万 - 项目类别:
Effect of Acetylcholinesterase inhibitors on Bone Metabolism and Fracture Risk Factors among older adults with mild to moderate Alzheimer's Disease
乙酰胆碱酯酶抑制剂对患有轻至中度阿尔茨海默病的老年人骨代谢和骨折危险因素的影响
- 批准号:
10739853 - 财政年份:2023
- 资助金额:
$ 30.35万 - 项目类别:
Antihypertensive Effect of Food-Origin Isothiocyanate Soluble Epoxide Hydrolase Inhibitors
食品源异硫氰酸酯可溶性环氧化物水解酶抑制剂的抗高血压作用
- 批准号:
10411131 - 财政年份:2022
- 资助金额:
$ 30.35万 - 项目类别: