Quantifying Physiologic and Pathologic Viscoelastic Phases of Biomolecular Condensates by Correlative Force and Fluorescence Microscopy
通过相关力和荧光显微镜量化生物分子凝聚物的生理和病理粘弹性相
基本信息
- 批准号:10708765
- 负责人:
- 金额:$ 39.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-15 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAtomic Force MicroscopyC9ORF72Cell physiologyColorCytoplasmic GranulesDNADNA BindingDevelopmentDiseaseEnhancersFluorescenceFluorescence MicroscopyFluorescence Recovery After PhotobleachingGenetic TranscriptionGoalsHealthHumanLengthLigand BindingLigandsLiquid substanceMapsMeasurementMicrofluidicsMolecularMutationNeurodegenerative DisordersNucleic AcidsPathologicPathway interactionsPhasePhase TransitionPhysical condensationPhysiologicalPlayPost-Translational Protein ProcessingProcessPropertyProtein DynamicsProteinsRNARNA BindingRegulationReportingResearchRibonucleoproteinsRoleSiteSolidStructureSystemTechniquescellular pathologyfrontotemporal lobar dementia amyotrophic lateral sclerosisinsightlaser tweezernanoscalenoveloptic trapoptic tweezerprogramssingle moleculetoolviscoelasticity
项目摘要
SUMMARY
In recent years, it has become increasingly clear that the material properties of ribonucleoprotein (RNP) granules,
which are formed via liquid-liquid phase separation, play crucial roles in both cellular physiology and pathology.
Nevertheless, mechanistic understandings of the molecular determinants and modulators of RNP granule
viscoelastic phases remain incomplete due to the limitations of currently available techniques to probe for protein
condensate dynamics across single-molecule to mesoscale. The goal of this proposal is to address this critical
gap by the development of a multi-parametric experimental toolbox that simultaneously reports on RNP
condensate structure and dynamics across different length-scales, with high sensitivity. Our approach will feature
correlative multicolor single-molecule fluorescence microscopy, dual-trap optical tweezers, and microfluidics.
Utilizing our novel toolbox, we will decipher the mechanisms of liquid-to-liquid and liquid-to-solid phase
transitions of intracellular RNP condensates, processes that critically contribute to the onset or development of
many neurodegenerative diseases including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia
(FTD). Commonly used fluorescence microscopy techniques, such as fluorescence recovery after
photobleaching (FRAP), offer only probe-specific protein/RNA diffusivity within the RNP granules. In contrast,
our proposed correlative force-fluorescence microscopy platform will provide a multiscale view of RNP
condensate dynamics by taking advantage of optical tweezer-based rheological and fluid dynamics
measurements in conjunction with quantification of protein dynamics using single-molecule fluorescence. We
hypothesize that (a) a hierarchy of protein-protein and protein-nucleic acid interactions determines both
nanoscale RNP dynamics and micron-scale material properties of the condensate, and (b) post-translational
modifications, RNA/DNA and ligand binding, and pathologic mutations modulate the material properties of RNP
condensates by manipulating the long-range and short-range inter-molecular forces. Overall, our research
program will address three Key Challenges (KCs): (a) we will develop a novel experimental toolbox based
on correlative multi-color confocal fluorescence microscopy and dual-trap optical tweezer that simultaneously
reports on molecular and mesoscale protein condensate structure and dynamics (KC 1), (b) we will apply our
toolbox to map the transition pathways of physiologic RNP granules to pathologic states in c9orf72 repeat
expansion disorder (KC 2), and (c) we will identify mechanisms of ligand-dependent transcriptional condensate
regulation at DNA enhancer sites (KC 3). Our studies will provide new insights into the determinants of functional
RNP condensate material states, dynamics, and composition, as well as identify novel pathways of these
granules’ pathologic alterations.
概括
近年来,越来越清楚的是,核糖核蛋白(RNP)颗粒的材料特性,
这是通过液态液相分离形成的,在细胞生理和病理学中起着至关重要的作用。
然而,RNP颗粒的分子决定剂和调节剂的机械理解
由于当前可用技术探测蛋白质的局限性,粘弹性相位仍然不完整
跨单分子凝结到中尺度的动力学。该提议的目的是解决这个关键
通过开发多参数实验工具箱的差距,该工具箱仅报告RNP
具有高灵敏度的不同长度尺度的凝结物结构和动力学。我们的方法将特征
相关的多色单分子荧光显微镜,双陷阱光学镊子和微流体学。
利用我们的新工具箱,我们将破译液体到液体和液相的机理
细胞内RNP冷凝物的过渡,严重有助于发作或发展的过程
许多神经退行性疾病,包括肌萎缩性侧性硬化症(ALS)和额颞痴呆
(FTD)。常用的荧光显微镜技术,例如荧光恢复
光漂白(FRAP),仅在RNP颗粒内提供探针特异性蛋白/RNA难度。相比之下,
我们提出的相关力荧光显微镜平台将提供RNP的多尺度视图
通过利用基于光学镊子的流动性和流体动力学来凝结电源动力学
使用单分子荧光对蛋白质动力学的定量结合进行测量。我们
假设(a)蛋白质 - 蛋白质和蛋白质核酸相互作用的层次结构决定了这两者都
冷凝水的纳米级RNP动力学和微米级材料特性,(b)翻译后
修饰,RNA/DNA和配体结合以及病理突变调节RNP的材料特性
通过操纵远距离和短距离分子间力来凝结。总体而言,我们的研究
计划将解决三个关键挑战(KCS):(a)我们将开发基于实验工具箱的新型挑战
在相关的多色共聚焦荧光显微镜和双陷阱光学镊子上
关于分子和中尺度蛋白凝结物结构和动力学的报告(kc 1),(b)我们将应用我们的
绘制生理RNP颗粒的过渡途径到C9ORF72重复的病理状态的工具箱
扩展障碍(KC 2),(c)我们将确定配体依赖性转录冷凝物的机制
DNA增强子位点的调节(KC 3)。我们的研究将为确定功能的新见解提供新的见解
RNP凝结物质状态,动力学和组成,并识别这些新的途径
颗粒的病理改变。
项目成果
期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Dissecting the biophysics and biology of intrinsically disordered proteins.
剖析本质上无序蛋白质的生物物理学和生物学。
- DOI:10.1016/j.tibs.2023.10.002
- 发表时间:2024
- 期刊:
- 影响因子:13.8
- 作者:Banerjee,PriyaR;Holehouse,AlexS;Kriwacki,Richard;Robustelli,Paul;Jiang,Hao;Sobolevsky,AlexanderI;Hurley,JenniferM;Mendell,JoshuaT
- 通讯作者:Mendell,JoshuaT
Measurement of Protein and Nucleic Acid Diffusion Coefficients Within Biomolecular Condensates Using In-Droplet Fluorescence Correlation Spectroscopy.
使用液滴内荧光相关光谱测量生物分子凝聚物内的蛋白质和核酸扩散系数。
- DOI:10.1007/978-1-0716-2663-4_9
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Alshareedah,Ibraheem;Banerjee,PriyaR
- 通讯作者:Banerjee,PriyaR
Ectopic biomolecular phase transitions: fusion proteins in cancer pathologies.
- DOI:10.1016/j.tcb.2022.03.005
- 发表时间:2022-08
- 期刊:
- 影响因子:19
- 作者:Davis, Richoo B.;Moosa, Mahdi Muhammad;Banerjee, Priya R.
- 通讯作者:Banerjee, Priya R.
Diffusiophoresis promotes phase separation and transport of biomolecular condensates.
扩散电泳促进生物分子凝聚物的相分离和传输。
- DOI:10.1101/2023.07.03.547532
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Doan,VietSang;Alshareedah,Ibraheem;Singh,Anurag;Banerjee,PriyaR;Shin,Sangwoo
- 通讯作者:Shin,Sangwoo
Temperature-dependent reentrant phase transition of RNA-polycation mixtures.
- DOI:10.1039/d1sm01557e
- 发表时间:2022-02-16
- 期刊:
- 影响因子:3.4
- 作者:Pullara P;Alshareedah I;Banerjee PR
- 通讯作者:Banerjee PR
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Priya R. Banerjee其他文献
Temperature-controlled microrheology illuminates distinctive roles of chain length and sticker strength on material properties of biomolecular condensates
- DOI:
10.1016/j.bpj.2023.11.2182 - 发表时间:
2024-02-08 - 期刊:
- 影响因子:
- 作者:
Anurag Singh;Ibraheem Alshareedah;Sean Yang;Vysakh Ramachandran;Alexander Quinn;Davit A. Potoyan;Priya R. Banerjee - 通讯作者:
Priya R. Banerjee
Sequence-Encoded Interactions Modulate Reentrant Liquid Condensation of Ribonucleoprotein-RNA Mixtures
- DOI:
10.1016/j.bpj.2019.11.2129 - 发表时间:
2020-02-07 - 期刊:
- 影响因子:
- 作者:
Ibraheem Alshareedah;Priya R. Banerjee - 通讯作者:
Priya R. Banerjee
Role of Interaction Modularity in Governing Phase Behavior, Structure and Dynamics of Ternary Protein-RNA Condensates
- DOI:
10.1016/j.bpj.2019.11.2951 - 发表时间:
2020-02-07 - 期刊:
- 影响因子:
- 作者:
Taranpreet Kaur;Priya R. Banerjee - 通讯作者:
Priya R. Banerjee
Sequence-encoded and Composition-dependent Protein-RNA Interactions Control Multiphasic Condensate Topologies
序列编码和成分依赖性蛋白质-RNA 相互作用控制多相凝聚拓扑
- DOI:
10.1101/2020.08.30.273748 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Taranpreet Kaur;Muralikrishna Raju;Ibraheem Alshareedah;Richoo B. Davis;D. Potoyan;Priya R. Banerjee - 通讯作者:
Priya R. Banerjee
A programmable landscape of viscoelastic protein-RNA condensates
- DOI:
10.1016/j.bpj.2021.11.961 - 发表时间:
2022-02-11 - 期刊:
- 影响因子:
- 作者:
Ibraheem Alshareedah;Priya R. Banerjee - 通讯作者:
Priya R. Banerjee
Priya R. Banerjee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Priya R. Banerjee', 18)}}的其他基金
Developing a screening platform to identify inhibitors of pathological self-assembly of Tau
开发筛选平台来鉴定 Tau 病理性自组装抑制剂
- 批准号:
10323679 - 财政年份:2021
- 资助金额:
$ 39.26万 - 项目类别:
Deciphering the role of low complexity domains in dual specificity kinase function
解读低复杂性结构域在双特异性激酶功能中的作用
- 批准号:
10217666 - 财政年份:2021
- 资助金额:
$ 39.26万 - 项目类别:
Administrative Supplements for Equipment Purchases for NIGMS-Funded Award: Quantifying Physiologic and Pathologic Viscoelastic Phases of Biomolecular Condensates by Correlative Force and Fluorescence
NIGMS 资助的设备采购行政补充:通过相关力和荧光量化生物分子凝聚体的生理和病理粘弹性相
- 批准号:
10582189 - 财政年份:2020
- 资助金额:
$ 39.26万 - 项目类别:
Quantifying Physiologic and Pathologic Viscoelastic Phases of Biomolecular Condensates by Correlative Force and Fluorescence Microscopy
通过相关力和荧光显微镜量化生物分子凝聚物的生理和病理粘弹性相
- 批准号:
10231209 - 财政年份:2020
- 资助金额:
$ 39.26万 - 项目类别:
Quantifying Physiologic and Pathologic Viscoelastic Phases of Biomolecular Condensates by Correlative Force and Fluorescence Microscopy
通过相关力和荧光显微镜量化生物分子凝聚物的生理和病理粘弹性相
- 批准号:
10029306 - 财政年份:2020
- 资助金额:
$ 39.26万 - 项目类别:
Quantifying Physiologic and Pathologic Viscoelastic Phases of Biomolecular Condensates by Correlative Force and Fluorescence Microscopy
通过相关力和荧光显微镜量化生物分子凝聚物的生理和病理粘弹性相
- 批准号:
10437758 - 财政年份:2020
- 资助金额:
$ 39.26万 - 项目类别:
Mechanism of liquid phase homeostasis of prion-like RNA binding proteins
朊病毒样RNA结合蛋白的液相稳态机制
- 批准号:
9809312 - 财政年份:2019
- 资助金额:
$ 39.26万 - 项目类别:
相似国自然基金
基于高速原子力显微镜的Gasdermin成孔蛋白打孔机理及动力学研究
- 批准号:32371525
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
分子间非共价键的原子力显微镜成像机制研究
- 批准号:22372048
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
基于原子力显微镜探讨肝纤维化动态进展中黏弹性生物力学基础
- 批准号:82202191
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
大气细颗粒物中纳米微塑料的原子力显微镜-拉曼成像鉴定及污染特征分析
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:
基于原子力显微镜的动态交联聚合物共价键解离/键合、链段松弛动力学及界面粘结研究
- 批准号:52173017
- 批准年份:2021
- 资助金额:58.00 万元
- 项目类别:面上项目
相似海外基金
Nanoscopic elucidation of dynamic behavior of RNA viral nucleocapsid proteins using high-speed atomic force microscopy (HS-AFM)
使用高速原子力显微镜 (HS-AFM) 纳米级阐明 RNA 病毒核衣壳蛋白的动态行为
- 批准号:
24K18449 - 财政年份:2024
- 资助金额:
$ 39.26万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Pushing the envelope: atomic force microscopy imaging of the bacterial outer membrane during growth and division
挑战极限:生长和分裂过程中细菌外膜的原子力显微镜成像
- 批准号:
BB/X007669/1 - 财政年份:2024
- 资助金额:
$ 39.26万 - 项目类别:
Research Grant
Unravelling dengue virus structural dynamics and conformational changes using high-speed atomic force microscopy
使用高速原子力显微镜揭示登革热病毒结构动力学和构象变化
- 批准号:
24K18450 - 财政年份:2024
- 资助金额:
$ 39.26万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
State-of-the-art atomic force microscopy facilities for South Australia
南澳大利亚最先进的原子力显微镜设施
- 批准号:
LE240100129 - 财政年份:2024
- 资助金额:
$ 39.26万 - 项目类别:
Linkage Infrastructure, Equipment and Facilities
Atomic scale reactivity of small islands of a bimetallic alloy on ceria to small molecules investigated by ultrahigh resolution atomic force microscopy
通过超高分辨率原子力显微镜研究二氧化铈上双金属合金小岛对小分子的原子尺度反应性
- 批准号:
24K01350 - 财政年份:2024
- 资助金额:
$ 39.26万 - 项目类别:
Grant-in-Aid for Scientific Research (B)