Refining Predictive Models for Neglected and Emerging Infectious Diseases
完善被忽视和新出现的传染病的预测模型
基本信息
- 批准号:10707496
- 负责人:
- 金额:$ 37.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-21 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:AdoptedCOVID-19CollectionCommunicable DiseasesDataData AnalysesData CollectionData SourcesDatabasesDevelopmentEmerging Communicable DiseasesEpidemicFoundationsFutureHumanInfectious Disease EpidemiologyInterventionLearningMeasuresMethodologyModelingPerformancePlayResearchResearch ActivityRiskRoleSchistosomiasisTimeUpdateVaccinesValidationclimate datacomputerized data processingcost effectivedata handlingdisorder controldisorder preventionepidemiologic dataepidemiology studyinterestmachine learning methodmethod developmentneglectoutcome predictionprediction algorithmpredictive modelingpredictive toolsprognosticseasonal influenzastatistical and machine learningwearable device
项目摘要
PROJECT SUMMARY
Predictive models play an essential role in disease prevention and control. Recent advances in scientific
research have allowed more thorough and in-depth data collection from epidemiological studies (e.g., GPS
data, climate data, wearable device data). However, due to the many variables collected and the relatively
short time frame for epidemiological data collection during some of the epidemics, missing information is
unavoidable, and subsequent updates of the database may be necessary. How to incorporate data with partial
information, i.e., with missingness, and predictors measured dynamically over time, into existing models to
perform more accurate and efficient predictions remains a challenge. Recently, the PI and his team have
developed predictive models for various purposes among several neglected and emerging infectious diseases,
including schistosomiasis, COVID-19, and human seasonal influenza. While conducting these studies, we
identified several practical issues prohibiting a broader implementation of the proposed models, such as
missing data and a lack of adaptive mechanisms based on dynamic inflows of predictors. Existing models
adopting the complete data analysis approach will significantly reduce the statistical power and cause potential
bias. Moreover, predictive models applied in epidemiological infectious disease studies often rely on historical
data collected up to a time point without taking into consideration of future data inputs. Meanwhile, the
development in statistical and machine learning methods laid the foundation for new dynamic predictive
models based on trajectory data, with recent progress in functional concurrent regression and incremental
learning. However, these methodological advances have been poorly integrated into field applications. Even in
recent COVID-19 research where advanced dynamic models have been developed, balancing the data flow
and prediction window has not been well studied. In addition, existing models often require a large amount of
variable collection, so a practical two-stage approach allowing limited data collection early on can be more
time- and cost-effective. In this MIRA proposal, we aim at refining predictive models for several neglected and
emerging infectious diseases. Specifically, three coherent projects with distinct research activities will be
pursued, which include: 1) refining hotspot prediction models for schistosomiasis interventions; 2) development
and validation of prognostic risk models for COVID-19 in the US, with methods development on missing data
handling and functional regression for dynamic prediction; 3) development and validation of a vaccine benefits
score for human seasonal influenza. The refined models are expected to be accompanied by new and more
general predictive algorithms involving missing data processing and dynamic prediction mechanisms to
enhance model performance and adaptability. The methodological development from this proposal will also
inform other epidemiological studies with similar challenges and have a broader long-term impact beyond the
scope of the infectious diseases covered in the currently proposed projects.
项目概要
预测模型在疾病预防和控制中发挥着重要作用。科学的最新进展
研究允许从流行病学研究中收集更彻底和深入的数据(例如,GPS
数据、气候数据、可穿戴设备数据)。然而,由于收集到的变量较多且相对
部分疫情期间流行病学数据收集时间较短,信息缺失
这是不可避免的,并且可能需要随后更新数据库。如何将数据与部分数据合并
信息,即缺失值和随时间动态测量的预测变量,进入现有模型,以
执行更准确、更高效的预测仍然是一个挑战。最近,PI 和他的团队
为多种被忽视和新出现的传染病的各种目的开发了预测模型,
包括血吸虫病、COVID-19 和人类季节性流感。在进行这些研究时,我们
确定了阻碍更广泛实施拟议模型的几个实际问题,例如
数据缺失和缺乏基于预测变量动态流入的自适应机制。现有型号
采用完整的数据分析方法将显着降低统计功效并导致潜在的
偏见。此外,流行病学传染病研究中应用的预测模型通常依赖于历史数据
收集到某个时间点的数据,而不考虑未来的数据输入。与此同时,
统计和机器学习方法的发展为新的动态预测奠定了基础
基于轨迹数据的模型,最近在功能并发回归和增量方面取得了进展
学习。然而,这些方法论的进步并没有很好地融入到现场应用中。即使在
最近的 COVID-19 研究开发了先进的动态模型,平衡了数据流
预测窗口尚未得到很好的研究。此外,现有模型通常需要大量
变量收集,因此一种实用的两阶段方法允许早期收集有限的数据可能会更有效
具有时间和成本效益。在这个 MIRA 提案中,我们的目标是完善一些被忽视和被忽视的预测模型。
新出现的传染病。具体来说,三个具有不同研究活动的连贯项目将
所追求的目标包括:1)完善血吸虫病干预热点预测模型; 2)开发
以及美国 COVID-19 预后风险模型的验证,以及针对缺失数据的方法开发
动态预测的处理和功能回归; 3) 疫苗益处的开发和验证
人类季节性流感的评分。精致的模型预计将伴随新的和更多的
涉及缺失数据处理和动态预测机制的通用预测算法
增强模型性能和适应性。该提案的方法论发展也将
为面临类似挑战的其他流行病学研究提供信息,并产生更广泛的长期影响
当前拟议项目涵盖的传染病范围。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Seasonal Influenza Vaccine Cannot Trigger a Titer Increase Among Some Elderly Individuals.
季节性流感疫苗无法在某些老年人中引发滴度增加。
- DOI:10.1101/2024.01.17.24301451
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Ge,Yang;Cao,Wangnan;Sun,Shengzhi;Ross,TedM;Shen,Ye
- 通讯作者:Shen,Ye
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ye Shen其他文献
Ye Shen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ye Shen', 18)}}的其他基金
Refining Predictive Models for Neglected and Emerging Infectious Diseases
完善被忽视和新出现的传染病的预测模型
- 批准号:
10494778 - 财政年份:2022
- 资助金额:
$ 37.75万 - 项目类别:
相似国自然基金
“湿漫膜原”视角下研究加味达原饮重塑COVID-19“免疫炎症稳态”的分子机制:TLR4介导IRF3/NF-κB通路串扰
- 批准号:82374291
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
CEACAM5调控Galectin-9介导的CD4+T细胞极化在COVID-19肠屏障损伤的作用机制研究
- 批准号:82370569
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于异构化数据和图神经网络预测新冠肺炎患者恢复期肺功能的研究
- 批准号:82302313
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于 GDF15-IL6 信号轴探究扶正解毒方逆转血管内皮衰老治疗COVID-19的作用与机制
- 批准号:82374392
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
SARS-CoV-2病毒编码的miR-nsp3-3p和miR-ORF10-5p协同调控COVID-19重症转化机制及临床价值研究
- 批准号:82372342
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
DATA MANAGEMENT FOR CANCER DIAGNOSIS PROGRAM ACTIVITIES
癌症诊断计划活动的数据管理
- 批准号:
10849595 - 财政年份:2023
- 资助金额:
$ 37.75万 - 项目类别:
Understanding and Improving Video-Based Primary Care Delivery to Veterans
了解和改善向退伍军人提供的基于视频的初级保健服务
- 批准号:
10636185 - 财政年份:2023
- 资助金额:
$ 37.75万 - 项目类别:
Implementing Scalable, PAtient-centered Team-based Care for Adults with Type 2 Diabetes and Health Disparities (iPATH)
为患有 2 型糖尿病和健康差异的成人实施可扩展、以患者为中心的团队护理 (iPATH)
- 批准号:
10660735 - 财政年份:2023
- 资助金额:
$ 37.75万 - 项目类别:
Bayesian Mortality Estimation from Disparate Data Sources
来自不同数据源的贝叶斯死亡率估计
- 批准号:
10717177 - 财政年份:2023
- 资助金额:
$ 37.75万 - 项目类别: