Refining Predictive Models for Neglected and Emerging Infectious Diseases
完善被忽视和新出现的传染病的预测模型
基本信息
- 批准号:10707496
- 负责人:
- 金额:$ 37.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-21 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:AdoptedCOVID-19CollectionCommunicable DiseasesDataData AnalysesData CollectionData SourcesDatabasesDevelopmentEmerging Communicable DiseasesEpidemicFoundationsFutureHumanInfectious Disease EpidemiologyInterventionLearningMeasuresMethodologyModelingPerformancePlayResearchResearch ActivityRiskRoleSchistosomiasisTimeUpdateVaccinesValidationclimate datacomputerized data processingcost effectivedata handlingdisorder controldisorder preventionepidemiologic dataepidemiology studyinterestmachine learning methodmethod developmentneglectoutcome predictionprediction algorithmpredictive modelingpredictive toolsprognosticseasonal influenzastatistical and machine learningwearable device
项目摘要
PROJECT SUMMARY
Predictive models play an essential role in disease prevention and control. Recent advances in scientific
research have allowed more thorough and in-depth data collection from epidemiological studies (e.g., GPS
data, climate data, wearable device data). However, due to the many variables collected and the relatively
short time frame for epidemiological data collection during some of the epidemics, missing information is
unavoidable, and subsequent updates of the database may be necessary. How to incorporate data with partial
information, i.e., with missingness, and predictors measured dynamically over time, into existing models to
perform more accurate and efficient predictions remains a challenge. Recently, the PI and his team have
developed predictive models for various purposes among several neglected and emerging infectious diseases,
including schistosomiasis, COVID-19, and human seasonal influenza. While conducting these studies, we
identified several practical issues prohibiting a broader implementation of the proposed models, such as
missing data and a lack of adaptive mechanisms based on dynamic inflows of predictors. Existing models
adopting the complete data analysis approach will significantly reduce the statistical power and cause potential
bias. Moreover, predictive models applied in epidemiological infectious disease studies often rely on historical
data collected up to a time point without taking into consideration of future data inputs. Meanwhile, the
development in statistical and machine learning methods laid the foundation for new dynamic predictive
models based on trajectory data, with recent progress in functional concurrent regression and incremental
learning. However, these methodological advances have been poorly integrated into field applications. Even in
recent COVID-19 research where advanced dynamic models have been developed, balancing the data flow
and prediction window has not been well studied. In addition, existing models often require a large amount of
variable collection, so a practical two-stage approach allowing limited data collection early on can be more
time- and cost-effective. In this MIRA proposal, we aim at refining predictive models for several neglected and
emerging infectious diseases. Specifically, three coherent projects with distinct research activities will be
pursued, which include: 1) refining hotspot prediction models for schistosomiasis interventions; 2) development
and validation of prognostic risk models for COVID-19 in the US, with methods development on missing data
handling and functional regression for dynamic prediction; 3) development and validation of a vaccine benefits
score for human seasonal influenza. The refined models are expected to be accompanied by new and more
general predictive algorithms involving missing data processing and dynamic prediction mechanisms to
enhance model performance and adaptability. The methodological development from this proposal will also
inform other epidemiological studies with similar challenges and have a broader long-term impact beyond the
scope of the infectious diseases covered in the currently proposed projects.
项目摘要
预测模型在疾病预防和控制中起着至关重要的作用。科学的最新进展
研究允许从流行病学研究中进行更深入和深入的数据收集(例如GPS
数据,气候数据,可穿戴设备数据)。但是,由于收集了许多变量,并且相对
在某些流行病期间,流行病学数据收集的时间短,缺少信息是
不可避免的是数据库的后续更新。如何将数据与部分合并
信息,即缺失,并且随着时间的推移动态测量的信息,将现有模型衡量
执行更准确和有效的预测仍然是一个挑战。最近,PI和他的团队有
在几种被忽视和新兴的传染病中开发了用于各种目的的预测模型,
包括血吸虫病,Covid-19和人类季节性流感。在进行这些研究时,我们
确定了几个实用问题,禁止更广泛的拟议模型实施
基于预测变量的动态流入,缺少数据和缺乏自适应机制。现有模型
采用完整的数据分析方法将大大降低统计能力并引起潜力
偏见。此外,在流行病学传染病研究中应用的预测模型通常依赖于历史
数据收集到时间点,而无需考虑将来的数据输入。同时,
统计和机器学习方法的开发为新的动态预测奠定了基础
基于轨迹数据的模型,在功能并发回归和增量方面取得了最新进展
学习。但是,这些方法论的进步已融入现场应用中很差。甚至在
最近开发了高级动态模型的Covid-19研究,平衡数据流
预测窗口尚未得到很好的研究。此外,现有型号通常需要大量
可变收集,因此一种实用的两阶段方法,可以尽早进行有限的数据收集
时间和成本效益。在此Mira建议中,我们旨在完善几个被忽视的预测模型,
新兴的传染病。具体来说,将有三个具有不同研究活动的连贯项目
追捕,其中包括:1)精炼血吸虫病干预措施的热点预测模型; 2)发展
以及在美国的Covid-19的预后风险模型的验证,并在缺失的数据上开发方法
进行动态预测的处理和功能回归; 3)开发和验证疫苗收益
人类季节性流感的得分。预计精致的型号将伴随新的型号
一般预测算法涉及缺失数据处理和动态预测机制
增强模型性能和适应性。该提议的方法论发展也将
向其他具有类似挑战的流行病学研究通知其他流行病学研究
当前建议的项目涵盖的传染病范围。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Seasonal Influenza Vaccine Cannot Trigger a Titer Increase Among Some Elderly Individuals.
季节性流感疫苗无法在某些老年人中引发滴度增加。
- DOI:10.1101/2024.01.17.24301451
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Ge,Yang;Cao,Wangnan;Sun,Shengzhi;Ross,TedM;Shen,Ye
- 通讯作者:Shen,Ye
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ye Shen其他文献
Ye Shen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ye Shen', 18)}}的其他基金
Refining Predictive Models for Neglected and Emerging Infectious Diseases
完善被忽视和新出现的传染病的预测模型
- 批准号:
10494778 - 财政年份:2022
- 资助金额:
$ 37.75万 - 项目类别:
相似国自然基金
CEACAM5调控Galectin-9介导的CD4+T细胞极化在COVID-19肠屏障损伤的作用机制研究
- 批准号:82370569
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
cGAS-STING信号通路调控CXCR3+MX1+T细胞分化在新冠肺炎发病机制中的作用研究
- 批准号:82302002
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
COVID-19疫情对我国儿童生长发育影响的异质性研究
- 批准号:42371429
- 批准年份:2023
- 资助金额:52.00 万元
- 项目类别:面上项目
“湿漫膜原”视角下研究加味达原饮重塑COVID-19“免疫炎症稳态”的分子机制:TLR4介导IRF3/NF-κB通路串扰
- 批准号:82374291
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
COVID-19中线粒体囊泡抑制CD8+T细胞记忆分化的机制研究
- 批准号:82300018
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
DATA MANAGEMENT FOR CANCER DIAGNOSIS PROGRAM ACTIVITIES
癌症诊断计划活动的数据管理
- 批准号:
10849595 - 财政年份:2023
- 资助金额:
$ 37.75万 - 项目类别:
Understanding and Improving Video-Based Primary Care Delivery to Veterans
了解和改善向退伍军人提供的基于视频的初级保健服务
- 批准号:
10636185 - 财政年份:2023
- 资助金额:
$ 37.75万 - 项目类别:
Implementing Scalable, PAtient-centered Team-based Care for Adults with Type 2 Diabetes and Health Disparities (iPATH)
为患有 2 型糖尿病和健康差异的成人实施可扩展、以患者为中心的团队护理 (iPATH)
- 批准号:
10660735 - 财政年份:2023
- 资助金额:
$ 37.75万 - 项目类别:
Bayesian Mortality Estimation from Disparate Data Sources
来自不同数据源的贝叶斯死亡率估计
- 批准号:
10717177 - 财政年份:2023
- 资助金额:
$ 37.75万 - 项目类别: