Long-read single-molecule protein sequencing on an array of unfoldase-coupled nanopores
在一系列解折叠酶偶联纳米孔上进行长读长单分子蛋白质测序
基本信息
- 批准号:10708013
- 负责人:
- 金额:$ 61.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-21 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:26S proteasomeAffinityAmino Acid SequenceAmino Acid SubstitutionAmino AcidsBiochemicalBioinformaticsBiologicalCell Culture TechniquesCellsCollaborationsCombinatoricsComplexCoupledDNADataDatabasesDetectionDevelopmentDevicesDiseaseEngineeringEscherichia coliEukaryotic CellFoundationsGenomeGrantHumanHuman GenomeIn VitroIndividualLabelLengthMalignant NeoplasmsMass Spectrum AnalysisMethodsModelingModificationMolecular MotorsMotorMotor ActivityMovementN-terminalNucleic AcidsNucleic acid sequencingPeptide Sequence DeterminationPeptidesPerformancePhenotypePore ProteinsPost-Translational Protein ProcessingProkaryotic CellsProtein IsoformsProtein translocationProteinsProteomeProteomicsQualifyingReagentResearch PersonnelResolutionRoleRouteSamplingScienceSequence AnalysisSignal TransductionStructureTechniquesTechnologyTechnology TransferTertiary Protein StructureTestingTouch sensationTrainingTranslatingVariantbasechemical conjugatedark matterdetection methoddetectorexperienceinsightmarkov modelmodel organismnanometernanoporeneural networkprotein aminoacid sequenceresearch and developmentsensorsequencing platformsingle moleculetechnology platformtooltranscriptometranscriptome sequencingunfoldase
项目摘要
SUMMARY
We propose to develop the foundations of a platform for direct sequencing of native, full-length protein strands
using unfoldase-coupled nanopore array technology. In principle, this technology could be used to identify
protein primary sequence, in addition to certain post-translational modifications (PTMs) found in prokaryotic
and eukaryotic cells, with single-molecule resolution. It is a foundational advance over existing and other
next-gen proteomic technologies such as Edman degradation, mass spectrometry, fluorescent label
approaches, and immunoaffinity-based methods that suffer from limitations in read length, throughput,
sensitivity, labeling efficiency, and/or the availability of suitable affinity reagents. Nanopore sequencing of intact
protein strands overcomes these limitations because the ~1 nanometer-long sensor directly interacts with the
protein strand as it is linearly-driven through the pore by the unfoldase motor protein, manifesting
sequence-specific ionic current signals. Thus, complete sequence analysis of native protein molecules can be
achieved. This method is a natural technical extension of current nanopore sequencing platforms that use
molecular motors to control movement of nucleic acid strands through nanopores in DNA/RNA sequencing.
During the grant period, we will pursue three specific aims: 1) Establish baseline methods of controlled protein
translocation through nanopore sensor arrays using unfoldase motors; 2) Develop computational and
bioinformatic methods to translate raw nanopore signal data into protein sequence information (amino acid
calling and PTM detection); and 3) Establish techniques for analysis of native proteins and proteomic samples.
Our team of investigators is uniquely qualified to take on this project:
i) We pioneered the analysis of full-length protein strands using unfoldase-coupled nanopore sensors and
recently demonstrated that the Oxford Nanopore MinION nanopore array device can be used to directly detect
peptide strands and resolve single amino acid substitutions (Nivala).
ii) Co-investigators on this application have elucidated and exquisitely characterized the enzymatic
mechanisms of unfoldase motor activity through in vitro biochemical, single-molecule, and structural studies
(Martin), and have led the development of nanopore raw signal analyses for sequencing of nucleic acids,
including direct RNA sequencing, genome and transcriptome-wide detection of modified bases, and assembly
of a human genome using ultra-long DNA nanopore reads (Jain).
iii) Collaborators will provide access to enabling nanopore technology platforms and expertise, including
highly-parallel nanopore sensor arrays and customized nanopore proteins, and offer natural routes to
technology transfer (Oxford Nanopore), contribute to characterization and comparison of project results to
traditional analysis methods such as protein mass spectrometry (Guttman), and advise on compelling
technological applications that will be enabled by successful execution of this project (Timp).
概括
我们建议开发一个平台的基础,用于对天然全长蛋白质链进行直接测序
使用非折叠酶耦合纳米孔阵列技术。原则上,该技术可用于识别
蛋白质一级序列,以及原核生物中发现的某些翻译后修饰 (PTM)
和真核细胞,具有单分子分辨率。这是对现有和其他技术的根本性进步
下一代蛋白质组技术,例如 Edman 降解、质谱、荧光标记
方法和基于免疫亲和力的方法受到读长、吞吐量的限制,
灵敏度、标记效率和/或合适的亲和试剂的可用性。完整的纳米孔测序
蛋白质链克服了这些限制,因为约 1 纳米长的传感器直接与
蛋白质链,因为它由解折叠酶马达蛋白线性驱动通过孔,表现出
序列特异性离子电流信号。因此,可以对天然蛋白质分子进行完整的序列分析
实现了。该方法是当前纳米孔测序平台的自然技术延伸,该平台使用
分子马达在 DNA/RNA 测序中控制核酸链通过纳米孔的运动。
在资助期间,我们将追求三个具体目标:1)建立受控蛋白质的基线方法
使用去折叠酶马达通过纳米孔传感器阵列进行易位; 2)发展计算和
将原始纳米孔信号数据转化为蛋白质序列信息(氨基酸
呼叫和 PTM 检测); 3) 建立天然蛋白质和蛋白质组样品的分析技术。
我们的研究团队拥有承担该项目的独特资质:
i) 我们率先使用解折叠酶耦合纳米孔传感器分析全长蛋白质链,
最近证明Oxford Nanopore MinION纳米孔阵列装置可用于直接检测
肽链并解析单个氨基酸取代(Nivala)。
ii) 该应用的共同研究者已经阐明并精确地表征了酶促
通过体外生化、单分子和结构研究了解解折叠酶运动活性的机制
(马丁),并领导了用于核酸测序的纳米孔原始信号分析的开发,
包括直接 RNA 测序、修饰碱基的基因组和转录组范围检测以及组装
使用超长 DNA 纳米孔读数分析人类基因组 (Jain)。
iii) 合作者将提供纳米孔技术平台和专业知识,包括
高度并行的纳米孔传感器阵列和定制的纳米孔蛋白质,并提供自然途径
技术转让(牛津纳米孔),有助于项目结果的表征和比较
传统的分析方法,例如蛋白质质谱(Guttman),并提供令人信服的建议
该项目的成功执行将实现技术应用(Timp)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeffrey Matthew Nivala其他文献
Jeffrey Matthew Nivala的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
抗原非特异性B细胞进入生发中心并实现亲和力成熟的潜力与调控机制
- 批准号:32370941
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于计算生物学技术小分子农兽药残留物驼源单域抗体虚拟筛选与亲和力成熟 -以内蒙古阿拉善双峰驼为例
- 批准号:32360190
- 批准年份:2023
- 资助金额:34 万元
- 项目类别:地区科学基金项目
面向免疫疗法标志物识别的基于多特征融合的肽与MHC亲和力预测研究
- 批准号:62302277
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于胞内蛋白亲和力标记策略进行新型抗类风湿性关节炎的选择性OGG1小分子抑制剂的发现
- 批准号:82304698
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向多场景应用的药物-靶标结合亲和力预测研究
- 批准号:62371403
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Proteasomal recruiters of PAX3-FOXO1 Designed via Sequence-Based Generative Models
通过基于序列的生成模型设计的 PAX3-FOXO1 蛋白酶体招募剂
- 批准号:
10826068 - 财政年份:2023
- 资助金额:
$ 61.2万 - 项目类别:
4-HNE and MDA adduction of SREBP-1 and PPAR-alpha in ALD
ALD 中 SREBP-1 和 PPAR-α 的 4-HNE 和 MDA 内合
- 批准号:
7479709 - 财政年份:2005
- 资助金额:
$ 61.2万 - 项目类别:
Physiology of proteasomes in Haloferax volcanii
Haloferax volcanii 蛋白酶体的生理学
- 批准号:
7388894 - 财政年份:2000
- 资助金额:
$ 61.2万 - 项目类别:
Physiology of proteasomes in Haloferax volcanii
Haloferax volcanii 蛋白酶体的生理学
- 批准号:
7216330 - 财政年份:2000
- 资助金额:
$ 61.2万 - 项目类别: