Measuring and modeling the dynamics ofpatterning in human stem cells
测量和模拟人类干细胞模式的动态
基本信息
- 批准号:10734567
- 负责人:
- 金额:$ 34.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-01-11 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAgreementAnteriorAutomobile DrivingBiomedical EngineeringBuffersCRISPR interferenceCell LineCellsComplexDataDefectDevelopmentDevelopmental BiologyEmbryoEthicsEtiologyFeedbackFetal TissuesFibroblast Growth FactorGene ExpressionGene Expression ProfileGenesGeneticGoalsGrowthHumanHuman DevelopmentImageIn SituIn VitroLigandsMaintenanceMeasuresMesodermMesoderm CellMethodsMicroscopyModelingMolecular BiologyMonitorMorphogenesisMorphologyMusNeural tubeNeuronsNoiseOrganoidsParaxial MesodermPatternPredispositionProcessProliferatingProteinsReporterReproducibilityResearchRoleSignal PathwaySignal TransductionSourceSpinal CordSpinal DysraphismSystemTailTestingTissuesTranscriptional RegulationTretinoinUndifferentiatedVertebratesWNT Signaling PathwayWorkcell typedevelopmental diseasedynamic systemembryo tissueembryonic stem cellexperimental studygene regulatory networkhuman diseasehuman modelhuman stem cellsimage processingin situ sequencingin uteroin vitro Modelin vivoinsightknock-downmathematical modelmodel organismmorphogensneuralnoveloptogeneticspredictive modelingpreventprogenitorreceptorscoliosisself-renewalsingle cell sequencingsomitogenesisspatiotemporalstem cellstooltranscription factortranscriptome sequencing
项目摘要
Abstract
The long-term goal of this project is to understand how cells sense and process signals to make fate decisions
and pattern into complex tissues, both during normal human development and in developmental diseases.
How tissues of the embryo pattern and undergo morphogenesis is a fundamental question in developmental
biology. This application will address the question in the context of the axial elongation of the human embryo
during development, during which it breaks anterior-posterior (A-P) symmetry, forms a tailbud posteriorly, and
elongates along the A-P axis. The progenitors in the tail bud proliferate to drive this extension and further
differentiate to give rise to neural and mesodermal cell types. This proposal aims to understand how axial
elongation is driven and how the progenitor cells in the tailbud maintain a self-sustaining pool, even as they
differentiate into neural and mesodermal cells. Since the mechanisms underlying human axial elongation and
patterning are not shared between other vertebrates, the generalizability of results from model organisms to
humans remains unknown. While ethical reasons necessitate the use of in vitro models of human
development, the large variability in such organoid systems has been a critical barrier.
Preliminary work overcame this barrier to strikingly and reproducibly model human axial morphogenesis and
patterning by developing an organoid system that elongates to generate the posterior neural tube and flanking
paraxial mesoderm. Using this powerful system, the proposal seeks to answer two fundamental questions
associated with this process: first, how morphogen signals break A-P symmetry and stably drive self-sustaining
axial extension along a single axis. The goal is to uncover the underlying dynamical system that is activated to
drive self-sustaining axial elongation and to understand how this system buffers against noise so as not to be
susceptible to dynamical instabilities, for example, leading to branched or multiple axes. The second is to
determine the dynamical system governing the maintenance of a proliferating pool of progenitors in the tailbud
throughout axial elongation, even as they are driven to differentiate into neural and mesodermal tissues. The
proposal brings together methods to infer and measure spatiotemporal profiles of gene expression; compare
these profiles with other model organisms to determine similarities and differences in gene expression patterns
driving axial elongation, and Bayesian ensemble modeling to build predictive models of the GRN driving axial
elongation and experimental tools to test model predictions. The proposal will allow us to achieve a quantitative
understanding of the dynamics across scales, from intracellular signaling and transcriptional regulation to
cellular rearrangement to tissue-level axial extension made possible by new human stem cell lines, imaging,
image processing, statistical inference, mathematical modeling, and bioengineering tools, to provide insights
into principles governing human axial elongation. The ability to build and test quantitative predictive models of
human axial extension will open novel avenues to understanding the mechanisms underlying human diseases.
抽象的
该项目的长期目标是了解细胞如何感知和处理信号以做出命运决定
并在正常人类发育和发育疾病期间形成复杂组织的模式。
胚胎组织的模式和形态发生是发育中的一个基本问题
生物学。该应用将解决人类胚胎轴向伸长的问题
在发育过程中,它打破前后(A-P)对称性,在后面形成尾芽,并且
沿 A-P 轴伸长。尾芽中的祖细胞增殖以驱动这种延伸并进一步
分化产生神经细胞和中胚层细胞类型。该提案旨在了解轴向
伸长是驱动的,以及尾芽中的祖细胞如何维持一个自我维持的池,即使它们
分化为神经细胞和中胚层细胞。由于人类轴向伸长的机制和
模式在其他脊椎动物之间不共享,模型生物的结果具有普遍性
人类仍然未知。虽然伦理原因需要使用人类体外模型
开发中,此类类器官系统的巨大变异性一直是一个关键障碍。
初步工作克服了这一障碍,以惊人且可重复的方式模拟人类轴向形态发生和
通过开发类器官系统来形成图案,该系统可以伸长以生成后神经管和侧翼
近轴中胚层。该提案旨在利用这个强大的系统来回答两个基本问题
与这个过程相关的:第一,形态发生素信号如何打破A-P对称性并稳定驱动自持
沿单个轴线的轴向延伸。目标是揭示被激活的潜在动力系统
驱动自持轴向伸长,并了解该系统如何缓冲噪音,以免被
容易受到动态不稳定的影响,例如,导致分支轴或多轴。第二个是
确定控制尾芽中祖细胞增殖池维持的动力系统
在整个轴向伸长过程中,即使它们被驱动分化为神经和中胚层组织。这
该提案汇集了推断和测量基因表达时空概况的方法;比较
将这些图谱与其他模型生物体进行比较,以确定基因表达模式的相似性和差异
驱动轴向伸长率和贝叶斯集成建模,以构建 GRN 驱动轴向的预测模型
用于测试模型预测的伸长率和实验工具。该提案将使我们能够实现定量
了解跨尺度的动态,从细胞内信号传导和转录调控到
新的人类干细胞系、成像、
图像处理、统计推断、数学建模和生物工程工具,以提供见解
纳入控制人体轴向伸长的原则。建立和测试定量预测模型的能力
人类轴向延伸将为理解人类疾病的机制开辟新途径。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Controlling human organoid symmetry breaking reveals signaling gradients drive segmentation clock waves.
控制人体器官对称性破坏揭示了信号梯度驱动分段时钟波。
- DOI:
- 发表时间:2023-02-02
- 期刊:
- 影响因子:64.5
- 作者:Yaman, Yusuf Ilker;Ramanathan, Sharad
- 通讯作者:Ramanathan, Sharad
Mouse embryo geometry drives formation of robust signaling gradients through receptor localization.
小鼠胚胎几何形状通过受体定位驱动强大的信号梯度的形成。
- DOI:
- 发表时间:2019-10-04
- 期刊:
- 影响因子:16.6
- 作者:Zhang, Zhechun;Zwick, Steven;Loew, Ethan;Grimley, Joshua S;Ramanathan, Sharad
- 通讯作者:Ramanathan, Sharad
Controlling organoid symmetry breaking uncovers an excitable system underlying human axial elongation.
控制类器官对称性破坏揭示了人类轴向伸长背后的可兴奋系统。
- DOI:
- 发表时间:2023-02-02
- 期刊:
- 影响因子:64.5
- 作者:Anand, Giridhar M;Megale, Heitor C;Murphy, Sean H;Weis, Theresa;Lin, Zuwan;He, Yichun;Wang, Xiao;Liu, Jia;Ramanathan, Sharad
- 通讯作者:Ramanathan, Sharad
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sharad Ramanathan其他文献
Sharad Ramanathan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sharad Ramanathan', 18)}}的其他基金
Mechanisms of synaptic dopamine signaling in the control of behavior
突触多巴胺信号传导在行为控制中的机制
- 批准号:
10393622 - 财政年份:2020
- 资助金额:
$ 34.01万 - 项目类别:
Mechanisms of synaptic dopamine signaling in the control of behavior
突触多巴胺信号传导在行为控制中的机制
- 批准号:
10206280 - 财政年份:2020
- 资助金额:
$ 34.01万 - 项目类别:
Mechanisms of synaptic dopamine signaling in the control of behavior
突触多巴胺信号传导在行为控制中的机制
- 批准号:
10032939 - 财政年份:2020
- 资助金额:
$ 34.01万 - 项目类别:
Determining lineage decisions and gene regulatory networks governing the generation of key progenitor cell types during early human brain development
确定人类早期大脑发育过程中控制关键祖细胞类型生成的谱系决策和基因调控网络
- 批准号:
10611419 - 财政年份:2020
- 资助金额:
$ 34.01万 - 项目类别:
Mechanisms of Synaptic Dopamine Signaling in the Control of Behavior
突触多巴胺信号传导在行为控制中的机制
- 批准号:
10605347 - 财政年份:2020
- 资助金额:
$ 34.01万 - 项目类别:
Determining lineage decisions and gene regulatory networks governing the generation of key progenitor cell types during early human brain development
确定人类早期大脑发育过程中控制关键祖细胞类型生成的谱系决策和基因调控网络
- 批准号:
10380809 - 财政年份:2020
- 资助金额:
$ 34.01万 - 项目类别:
Measuring and modeling the dynamics of patterning in human stem cells
人类干细胞模式动态的测量和建模
- 批准号:
10318976 - 财政年份:2019
- 资助金额:
$ 34.01万 - 项目类别:
Measuring and modeling the dynamics of patterning in human stem cells
人类干细胞模式动态的测量和建模
- 批准号:
10084170 - 财政年份:2019
- 资助金额:
$ 34.01万 - 项目类别:
相似国自然基金
环回差分相位量子密钥分发协议的实际安全性研究
- 批准号:12304563
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于多中心属性密码的分布式随机数协议研究
- 批准号:62302129
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
物理设备与通信信道特征融合的协同内生安全模型及协议
- 批准号:62361010
- 批准年份:2023
- 资助金额:35 万元
- 项目类别:地区科学基金项目
卫星互联网端到端安全传输模型与安全路由协议研究
- 批准号:62302389
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
混洗相关基础协议及应用
- 批准号:62302118
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Pharmacodynamic Biomarker of Myotonic Dystrophy
强直性肌营养不良的药效生物标志物
- 批准号:
10651049 - 财政年份:2023
- 资助金额:
$ 34.01万 - 项目类别:
Anterior Insula Projections for Alcohol Drinking/Anxiety Interactions in Female and Male Rats
雌性和雄性大鼠饮酒/焦虑相互作用的前岛叶预测
- 批准号:
10608759 - 财政年份:2023
- 资助金额:
$ 34.01万 - 项目类别:
Correlating the microstructural thickness variations of the tear film lipid layer with clinical characteristics of dry eye with a novel optical method
用一种新颖的光学方法将泪膜脂质层的微观结构厚度变化与干眼的临床特征相关联
- 批准号:
10636304 - 财政年份:2023
- 资助金额:
$ 34.01万 - 项目类别:
Advanced Imaging and Simulation Tools for Personalized Corneal Disease Assessment and Surgery
用于个性化角膜疾病评估和手术的先进成像和模拟工具
- 批准号:
10644983 - 财政年份:2022
- 资助金额:
$ 34.01万 - 项目类别:
Clinical Validation of DystoniaNet Deep Learning Platform for Diagnosis of Isolated Dystonia
DystoniaNet 深度学习平台诊断孤立性肌张力障碍的临床验证
- 批准号:
10556419 - 财政年份:2022
- 资助金额:
$ 34.01万 - 项目类别: