Molecular Mechanisms of Mitochondrial Biogenesis

线粒体生物发生的分子机制

基本信息

  • 批准号:
    10735778
  • 负责人:
  • 金额:
    $ 31.87万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2028-06-30
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY Mitochondria are endosymbiotically-derived double membrane-bound organelles which provide cells with energy via oxidative respiration. Mitochondria also serve as a major hub for cellular metabolism and are involved in numerous vital pathways, including cell signaling, innate immune response, and apoptosis. Dysfunction of mitochondria is implicated in aging and many diseases and is a potential causative factor in neurodegenerative diseases. Most of >1,000 mitochondrial proteins are encoded by the nuclear genome and thus are imported from the cytosol shortly after being synthesized as precursors on cytosolic ribosomes. Thus, mitochondrial protein import is an essential process required for biogenesis and functional maintenance of mitochondria. The import process is mainly mediated by two universally conserved membrane complexes, the translocase of the outer membrane (TOM) complex and the translocase of the inner membrane (TIM) complex. The TOM complex mediates the initial translocation of precursor proteins across the outer mitochondrial membrane, and the TIM complex further translocates the precursor proteins across the inner mitochondrial membrane. The TIM complex is also responsible for integration of many integral membrane proteins to the inner membrane. Currently, it is poorly understood how the TOM and TIM complexes mediate these translocation processes. In the current proposal, we aim to address central outstanding questions about protein import mechanisms by the TOM and TIM complexes, using structural, biochemical, and biophysical approaches. These questions include how the translocase complexes specifically recognize their client proteins, how they form a path for protein translocation in the membranes, what are the molecular interactions and forces driving protein translocation, and how the translocase complexes are regulated. In particular, we will perform several cryo-electron microscopy (cryo-EM) studies to visualize the translocase complexes in different functional states, including substrate-engaged states, and gain insights into their mechanisms for substrate engagement and conformational changes. The outcomes of these studies will fundamentally advance our understanding of mitochondrial biology and provide new insights to develop novel approaches to treat mitochondrial-associated diseases, such as neurodegenerative diseases.
项目概要 线粒体是内共生衍生的双膜结合细胞器,为细胞提供 通过氧化呼吸获取能量。线粒体也是细胞代谢的主要枢纽, 参与许多重要途径,包括细胞信号传导、先天免疫反应和细胞凋亡。 线粒体功能障碍与衰老和许多疾病有关,并且是潜在的致病因素 神经退行性疾病。超过 1,000 种线粒体蛋白中的大多数是由核基因组编码的 因此在作为胞质核糖体上的前体合成后不久就从胞质中输入。因此, 线粒体蛋白输入是生物发生和功能维持所需的重要过程 线粒体。输入过程主要由两种普遍保守的膜复合物介导,即 外膜转位酶 (TOM) 复合物和内膜转位酶 (TIM) 复合物。 TOM 复合物介导前体蛋白穿过线粒体外的初始易位 TIM 复合物进一步将前体蛋白跨过线粒体内部 膜。 TIM 复合物还负责将许多整合膜蛋白整合到 内膜。目前,人们对 TOM 和 TIM 复合物如何介导这些作用知之甚少。 易位过程。在当前的提案中,我们的目标是解决以下核心悬而未决的问题: 利用结构、生物化学和生物物理学研究 TOM 和 TIM 复合物的蛋白质输入机制 接近。这些问题包括易位酶复合物如何特异性识别其客户 蛋白质,它们如何形成膜中蛋白质易位的路径,分子相互作用是什么 和驱动蛋白质易位的力量,以及易位酶复合物是如何调节的。特别是,我们将 进行多项冷冻电子显微镜 (cryo-EM) 研究,以可视化不同环境下的转位酶复合物 功能状态,包括底物接合状态,并深入了解其底物机制 参与和构象变化。这些研究的结果将从根本上推进我们的 了解线粒体生物学并为开发新的治疗方法提供新见解 线粒体相关疾病,例如神经退行性疾病。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eunyong Park其他文献

Eunyong Park的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

Deciphering the mitochondrial proton leak
破译线粒体质子泄漏
  • 批准号:
    10715257
  • 财政年份:
    2023
  • 资助金额:
    $ 31.87万
  • 项目类别:
Probing how hair bundle mechanical properties shape the mechanotransducer receptor current
探讨发束机械特性如何塑造机械传感器受体电流
  • 批准号:
    10778103
  • 财政年份:
    2023
  • 资助金额:
    $ 31.87万
  • 项目类别:
RAD51 paralog function in cancer predisposition and genome integrity
RAD51 旁系同源物在癌症易感性和基因组完整性中的功能
  • 批准号:
    10745028
  • 财政年份:
    2022
  • 资助金额:
    $ 31.87万
  • 项目类别:
RAD51 paralog function in cancer predisposition and genome integrity
RAD51 旁系同源物在癌症易感性和基因组完整性中的功能
  • 批准号:
    10206963
  • 财政年份:
    2021
  • 资助金额:
    $ 31.87万
  • 项目类别:
Structure, Function, and Mechanism of a Mitochondrial Chaperone
线粒体伴侣的结构、功能和机制
  • 批准号:
    10316887
  • 财政年份:
    2021
  • 资助金额:
    $ 31.87万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了