Computational and Experimental Studies of Protein Structure and Design
蛋白质结构和设计的计算和实验研究
基本信息
- 批准号:10727023
- 负责人:
- 金额:$ 7.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-01 至 2027-01-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAlgorithm DesignAlgorithmsAntibodiesAntigensAreaBindingBiochemicalBiologicalCellsCombinatorial OptimizationComputational GeometryComputer ModelsComputer softwareComputing MethodologiesDiseaseDisease ResistanceDrug DesignDrug TargetingDrug resistanceFutureGenerationsGoalsHumanIn VitroInvestigationMachine LearningMeasurementMeasuresMethodologyMethodsModelingMolecularMolecular BiologyMorbidity - disease rateMutationProbabilityProcessProgram SustainabilityProtein DynamicsProtein EngineeringProteinsResearchResearch Project GrantsResistanceStructureSystemTechniquesTechnologyTestingTherapeuticTherapeutic InterventionViral Antibodiesbiophysical propertiescomputer studiesdata modelingdesigndrug candidateexperimental studyimprovedin vivoinhibitormortalityneutralizing antibodynew therapeutic targetnovelnovel therapeuticsopen sourcepharmacologicprotein protein interactionprotein structureresilienceresistance mutationresponse
项目摘要
Project Summary. The determination of three-dimensional protein structures is essential for revealing molecular
mechanism of disease processes, and also for structure-based drug design. Concomitantly, technological advances in
protein design could revolutionize therapeutic treatment. With these advances, proteins and other molecules can be
designed to act on today’s undruggable proteins or tomorrow’s drug-resistant diseases. This proposed MIRA research
project focuses on computational and experimental studies of protein structure and design (PS&D). The interlocking goals
are to (A) determine protein structure and dynamics in systems of biomedical importance; and (B) design proteins,
inhibitors, and their molecular interactions, especially to predict and overcome resistance.
We develop novel algorithms in structural molecular biology. To surmount the challenges proposed herein, our algorithms
exploit combinatorial optimization, computational geometry and topology, and integrate advanced machine learning
techniques. We believe software for PS&D must be I) Open-Source and II) Free software. This is the goal of OSPREY. Thus,
we will (C) continue to develop free, open-source algorithms and software not only for challenging problems in the design
of proteins and their interactions, but also to determine difficult protein structures and characterize their dynamics.
We will use structural data and computational models to understand molecular mechanism and the basis of therapeutic
interventions, and perform detailed experimental measurements in vitro and in vivo to confirm, iterate, and improve both
our understanding of protein structure and molecular designs. The resulting models of protein structures and dynamics,
together with our novel design methodology, will illuminate targets of biochemical and pharmacological significance. We
will also advance PS&D by making algorithmic and modeling advances. We will test our methods and predictions by
creating designed protein and inhibitor constructs, solving empirical structures, and performing in vitro experiments to
measure enhanced biophysical properties on purified components, and in-cell experiments to measure biological efficacy.
We will apply our PS&D algorithms to several areas of biomedical importance. We will solve structures of systems under
our investigation and further develop the paradigm of protein structure as a continuous probability distribution. A set of
synergistic research thrusts is proposed, in which, for example, we will (1) predict future resistance mutations in protein
targets of novel drugs, (2) design protein-protein interaction (PPI) inhibitors that target “undruggable” proteins, and (3)
use our PS&D methodology to characterize and design antibody:antigen constructs, with the ultimate goal of creating
pan-neutralizing antibodies for viral targets. Our sustained program in developing novel computational methods to
accurately predict potential drug target mutations in response to early-stage leads should drive the design of more
resilient and durable first-generation drug candidates.
项目摘要:三维蛋白质结构的测定对于揭示分子结构至关重要。
疾病过程的机制,以及基于结构的药物设计随之而来的技术进步。
蛋白质设计可以彻底改变治疗方法。随着这些进步,蛋白质和其他分子可以被广泛应用。
旨在作用于当今不可成药的蛋白质或明天的耐药疾病。
项目专注于蛋白质结构和设计(PS&D)的计算和实验研究。
(A) 确定具有生物医学重要性的系统中的蛋白质结构和动力学;(B) 设计蛋白质;
抑制剂及其分子相互作用,尤其是预测和克服耐药性。
为了克服本文提出的挑战,我们开发了结构分子生物学的新颖算法。
利用组合优化、计算几何和拓扑,并集成先进的机器学习
我们相信 PS&D 的软件必须是 I) 开源和 II) 免费软件,因此,
我们将 (C) 继续开发免费、开源的算法和软件,不仅是为了解决设计中的挑战性问题
蛋白质及其相互作用,还可以确定困难的蛋白质结构并表征其动态。
我们将使用结构数据和计算模型来理解分子机制和治疗基础
干预措施,并在体外和体内进行详细的实验测量,以确认、迭代和改进两者
我们对蛋白质结构和分子设计的理解由此产生的蛋白质结构和动力学模型,
与我们新颖的设计方法一起,将阐明具有生化和药理学意义的目标。
我们还将通过算法和建模方面的进步来推进 PS&D,我们将通过以下方式测试我们的方法和预测。
创建设计的蛋白质和抑制剂结构,解决经验结构,并进行体外实验
测量纯化成分的增强生物物理特性,以及细胞内实验来测量生物功效。
我们将把我们的 PS&D 算法应用到几个具有生物医学重要性的领域,我们将解决以下系统的结构。
我们的研究并进一步发展了蛋白质结构作为一组连续概率分布的范式。
提出了协同研究重点,例如,我们将(1)预测蛋白质中未来的抗性突变
新药的靶标,(2) 设计针对“不可成药”蛋白质的蛋白质-蛋白质相互作用 (PPI) 抑制剂,以及 (3)
使用我们的 PS&D 方法来表征和设计抗体:抗原构建体,最终目标是创建
针对病毒靶点的泛中和抗体。我们持续计划开发新颖的计算方法来
准确预测响应早期先导的潜在药物靶点突变应该推动更多药物的设计
具有弹性和持久性的第一代候选药物。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bruce R. Donald其他文献
Resistor: an algorithm for predicting resistance mutations using Pareto optimization over multistate protein design and mutational signatures
Resistor:一种使用多态蛋白质设计和突变特征的帕累托优化来预测抗性突变的算法
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
N. Guerin;A. Feichtner;Eduard Stefan;T. Kaserer;Bruce R. Donald - 通讯作者:
Bruce R. Donald
DexDesign: A new OSPREY-based algorithm for designing de novo D-peptide inhibitors
DexDesign:一种基于 OSPREY 的新算法,用于从头设计 D 肽抑制剂
- DOI:
10.1101/2024.02.12.579944 - 发表时间:
2024-02-14 - 期刊:
- 影响因子:0
- 作者:
N. Guerin;Henry Childs;Pei Zhou;Bruce R. Donald - 通讯作者:
Bruce R. Donald
DexDesign: an OSPREY-based algorithm for designing de novo D-peptide inhibitors.
DexDesign:一种基于 OSPREY 的算法,用于从头设计 D 肽抑制剂。
- DOI:
10.1093/protein/gzae007 - 发表时间:
2024-01-29 - 期刊:
- 影响因子:0
- 作者:
N. Guerin;Henry Childs;Pei Zhou;Bruce R. Donald - 通讯作者:
Bruce R. Donald
A theory of manipulation and control for microfabricated actuator arrays
微加工执行器阵列的操纵和控制理论
- DOI:
10.1109/memsys.1994.555606 - 发表时间:
1994-01-25 - 期刊:
- 影响因子:0
- 作者:
K. Bohringer;Bruce R. Donald;Robert Mihailovich;Noel C. MacDonald - 通讯作者:
Noel C. MacDonald
An Efficient Parallel Algorithm for Accelerating Computational Protein Design
一种加速计算蛋白质设计的高效并行算法
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:5.8
- 作者:
Yichao Zhou;Wei Xu;Bruce R. Donald;Jianyang Zen - 通讯作者:
Jianyang Zen
Bruce R. Donald的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bruce R. Donald', 18)}}的其他基金
Computational and Experimental Studies of Protein Structure and Design
蛋白质结构和设计的计算和实验研究
- 批准号:
10554322 - 财政年份:2022
- 资助金额:
$ 7.89万 - 项目类别:
Diversity Supplement: Computational and Experimental Studies of Protein Structure and Design
多样性补充:蛋白质结构和设计的计算和实验研究
- 批准号:
10579649 - 财政年份:2022
- 资助金额:
$ 7.89万 - 项目类别:
Computational and Experimental Studies of Protein Structure and Design
蛋白质结构和设计的计算和实验研究
- 批准号:
10330495 - 财政年份:2022
- 资助金额:
$ 7.89万 - 项目类别:
Computational and Experimental Studies of Protein Structure and Design
蛋白质结构和设计的计算和实验研究
- 批准号:
10793426 - 财政年份:2022
- 资助金额:
$ 7.89万 - 项目类别:
Automated NMR Assignment and Protein Structure Determination
自动 NMR 分配和蛋白质结构测定
- 批准号:
7940504 - 财政年份:2009
- 资助金额:
$ 7.89万 - 项目类别:
Computational Active-Site Redesign and Binding Prediction via Molecular Ensembles
通过分子整体的计算活性位点重新设计和结合预测
- 批准号:
7462701 - 财政年份:2008
- 资助金额:
$ 7.89万 - 项目类别:
Computational Active-Site Redesign and Binding Prediction via Molecular Ensembles
通过分子整体的计算活性位点重新设计和结合预测
- 批准号:
8025987 - 财政年份:2008
- 资助金额:
$ 7.89万 - 项目类别:
相似国自然基金
知识图谱与算法融合的医院门诊空间生成设计研究
- 批准号:52378024
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
资源受限下集成学习算法设计与硬件实现研究
- 批准号:62372198
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
随机密度泛函理论的算法设计和分析
- 批准号:12371431
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
非零和微分博弈脉冲控制系统的动力学研究及学习算法设计
- 批准号:62373310
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于机器学习和贝叶斯优化算法的药物结晶溶剂设计方法
- 批准号:22308228
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Machine Learning with Scintillation Photon Counting Detectors to Advance PET Imaging Performance
利用闪烁光子计数探测器进行机器学习以提高 PET 成像性能
- 批准号:
10742435 - 财政年份:2023
- 资助金额:
$ 7.89万 - 项目类别:
Predicting adverse drug reactions via networks of drug binding pocket similarity
通过药物结合袋相似性网络预测药物不良反应
- 批准号:
10750556 - 财政年份:2023
- 资助金额:
$ 7.89万 - 项目类别:
An acquisition and analysis pipeline for integrating MRI and neuropathology in TBI-related dementia and VCID
用于将 MRI 和神经病理学整合到 TBI 相关痴呆和 VCID 中的采集和分析流程
- 批准号:
10810913 - 财政年份:2023
- 资助金额:
$ 7.89万 - 项目类别:
3D force sensing insoles for wearable, AI empowered, high-fidelity gait monitoring
3D 力传感鞋垫,用于可穿戴、人工智能支持的高保真步态监控
- 批准号:
10688715 - 财政年份:2023
- 资助金额:
$ 7.89万 - 项目类别:
Advanced thin-slab TOF-PET detector module for next generation of brain PET
用于下一代大脑 PET 的先进薄板 TOF-PET 探测器模块
- 批准号:
10719570 - 财政年份:2023
- 资助金额:
$ 7.89万 - 项目类别: