Osteocyte-dependent mechanisms of bone cartilage crosstalk in osteoarthritis

骨关节炎中骨软骨串扰的骨细胞依赖性机制

基本信息

项目摘要

SUMMARY Cartilage and subchondral bone cooperate to support healthy joint function, and damage to either contributes to osteoarthritis and pain. Nonetheless, the mechanisms by which this cooperation between cartilage and bone occurs remain unclear. Preliminary and published data support the diagnostic and clinical importance of subchondral bone shape in osteoarthritis (OA) progression and pain. Bone shape features, identified by deep learning algorithms, are among the strongest predictive biomarkers for OA. However, a major gap in understanding remains identification of the cellar and molecular mechanisms controlling joint shape. Defining these mechanisms could reveal preventative or therapeutic strategies to protect joints from OA. This team described a new and causal role for osteocytes in OA, such that loss of subchondral bone osteocyte function causes cartilage degeneration and joint shape change. Therefore, with expertise in osteocyte biology, deep learning, and statistical genetics, this team takes an innovative, multi-dimensional approach to identify these mechanisms, as well as genetic and imaging biomarkers that can be used to diagnose early-stage OA when the disease can still be therapeutically modified. This project will test the hypothesis that MRI and genetic markers of joint shape can identify individuals at high risk of OA, and that agents targeting osteocytes can prevent joint shape changes to mitigate OA. Aim 1 will extract genetic factors associated with joint shape traits that predict OA progression and joint pain in the human Osteoarthritis Initiative (OAI) cohort. The function of these genetic factors, including a candidate osteocyte-derived factor that has therapeutic potential in clinical studies, will be examined in Aim 2. This project will impact the identification of genetic correlates to imaging traits that predict clinically relevant OA outcomes in early OA, suggest biological mechanisms driving joint shape change, and highlight these mechanisms as potential targets for OA diagnostics and therapies. Therefore, successful completion of this project could fill a major clinical gap by developing imaging and genetic biomarkers and therapies that can precisely identify and treat subgroups of people at high risk of OA due to joint shape change early enough to prevent severe joint disease.
概括 软骨和软骨下骨共同支持健康的关节功能,任何一方的损伤都会导致 骨关节炎和疼痛。尽管如此,软骨和骨之间的这种合作机制 发生情况仍不清楚。初步和已发表的数据支持诊断和临床的重要性 软骨下骨形状在骨关节炎(OA)进展和疼痛中的作用。骨骼形状特征,通过深度识别 学习算法是 OA 最强的预测生物标志物之一。然而,存在重大差距 理解仍然是控制关节形状的地窖和分子机制的识别。定义 这些机制可以揭示保护关节免受骨关节炎的预防或治疗策略。这支球队 描述了骨细胞在 OA 中的新的因果作用,例如软骨下骨骨细胞功能的丧失 导致软骨退化和关节形状改变。因此,凭借骨细胞生物学方面的专业知识,深入 学习和统计遗传学,该团队采用创新的多维方法来识别这些 机制以及遗传和影像生物标志物,可用于诊断早期 OA 疾病仍然可以通过治疗方法进行改变。该项目将检验 MRI 和遗传标记的假设 关节形状的研究可以识别骨关节炎高危人群,而针对骨细胞的药物可以预防骨关节炎 改变形状以减轻 OA。目标 1 将提取与预测关节形状特征相关的遗传因素 人类骨关节炎倡议 (OAI) 队列中的 OA 进展和关节疼痛。这些基因的功能 因子,包括在临床研究中具有治疗潜力的候选骨细胞衍生因子,将被 在目标 2 中进行了检查。该项目将影响与预测的成像特征的遗传相关性的识别 早期 OA 的临床相关 OA 结果,表明驱动关节形状变化的生物机制,以及 强调这些机制作为 OA 诊断和治疗的潜在目标。因此,成功 该项目的完成可以通过开发成像和遗传生物标志物来填补主要的临床空白 能够精确识别和治疗因关节形状变化而导致骨关节炎高风险的亚群的疗法 尽早预防严重的关节疾病。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tamara N Alliston其他文献

Tamara N Alliston的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tamara N Alliston', 18)}}的其他基金

UCSF Musculoskeletal Training Program
加州大学旧金山分校肌肉骨骼训练计划
  • 批准号:
    10625232
  • 财政年份:
    2023
  • 资助金额:
    $ 40.87万
  • 项目类别:
The mechanistic control of bone quality and joint crosstalk by osteocytes
骨细胞对骨质量和关节串扰的机械控制
  • 批准号:
    10605074
  • 财政年份:
    2022
  • 资助金额:
    $ 40.87万
  • 项目类别:
Core Center for Musculoskeletal Biology and Medicine (Overall Application)
肌肉骨骼生物学与医学核心中心(整体应用)
  • 批准号:
    10460468
  • 财政年份:
    2019
  • 资助金额:
    $ 40.87万
  • 项目类别:
Skeletal Biology and Biomechanics (SBB) Core
骨骼生物学和生物力学 (SBB) 核心
  • 批准号:
    10460472
  • 财政年份:
    2019
  • 资助金额:
    $ 40.87万
  • 项目类别:
Skeletal Biology and Biomechanics (SBB) Core
骨骼生物学和生物力学 (SBB) 核心
  • 批准号:
    10642797
  • 财政年份:
    2019
  • 资助金额:
    $ 40.87万
  • 项目类别:
Skeletal Biology and Biomechanics (SBB) Core
骨骼生物学和生物力学 (SBB) 核心
  • 批准号:
    10215391
  • 财政年份:
    2019
  • 资助金额:
    $ 40.87万
  • 项目类别:
Core Center for Musculoskeletal Biology and Medicine (Overall Application)
肌肉骨骼生物学与医学核心中心(整体应用)
  • 批准号:
    10707598
  • 财政年份:
    2019
  • 资助金额:
    $ 40.87万
  • 项目类别:
Core Center for Musculoskeletal Biology and Medicine (Overall Application)
肌肉骨骼生物学与医学核心中心(整体应用)
  • 批准号:
    10642787
  • 财政年份:
    2019
  • 资助金额:
    $ 40.87万
  • 项目类别:
Core Center for Musculoskeletal Biology and Medicine (Overall Application)
肌肉骨骼生物学与医学核心中心(整体应用)
  • 批准号:
    10215386
  • 财政年份:
    2019
  • 资助金额:
    $ 40.87万
  • 项目类别:
AAOS/ORS Tackling Joint Disease by Understanding Crosstalk between Cartilage and Bone Research Symposium
AAOS/ORS 通过了解软骨与骨之间的串扰来应对关节疾病研究研讨会
  • 批准号:
    9053709
  • 财政年份:
    2015
  • 资助金额:
    $ 40.87万
  • 项目类别:

相似国自然基金

角质形成细胞源性外泌体携载miR-31调控成纤维细胞ERK通路抗皮肤老化的作用机制
  • 批准号:
    82373460
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
塑料光老化介导的微(纳)塑料形成和光解产物释放对雄性生殖内分泌的干扰研究
  • 批准号:
    22376195
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
东北黑土中农膜源微塑料冻融老化特征及其毒性效应
  • 批准号:
    42377282
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
温度作用下CA砂浆非线性老化蠕变性能的多尺度研究
  • 批准号:
    12302265
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
苯乙烯-丁二烯共聚物力化学老化的自由基捕获光环加成协同修复机制
  • 批准号:
    22303065
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

A Novel Small Molecule Oral Therapeutic to Prevent and Reverse Skeletal Muscle Atrophy in Aging Adults
一种预防和逆转老年人骨骼肌萎缩的新型小分子口服疗法
  • 批准号:
    10761425
  • 财政年份:
    2023
  • 资助金额:
    $ 40.87万
  • 项目类别:
Muscle Fatigue's Impact on Gait Mechanics and Neuromuscular Control in Knee Osteoarthritis
肌肉疲劳对膝骨关节炎步态力学和神经肌肉控制的影响
  • 批准号:
    10676554
  • 财政年份:
    2023
  • 资助金额:
    $ 40.87万
  • 项目类别:
Preclinical assessment of a novel systemic drug candidate for osteoarthritic pain
治疗骨关节炎疼痛的新型全身候选药物的临床前评估
  • 批准号:
    10642544
  • 财政年份:
    2023
  • 资助金额:
    $ 40.87万
  • 项目类别:
Diversity Supplement_Folly Patterson
多样性补充资料_Folly Patterson
  • 批准号:
    10841930
  • 财政年份:
    2023
  • 资助金额:
    $ 40.87万
  • 项目类别:
Growth hormone regulating chondrocyte metabolism for osteoarthritis development
生长激素调节软骨细胞代谢促进骨关节炎的发展
  • 批准号:
    10730575
  • 财政年份:
    2023
  • 资助金额:
    $ 40.87万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了