Application of deep learning and novel survival models to predict MCI-to-AD dementia progression

应用深度学习和新型生存模型预测 MCI 至 AD 痴呆的进展

基本信息

  • 批准号:
    10725359
  • 负责人:
  • 金额:
    $ 8.61万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

Project summary/Abstract Alzheimer's disease (AD) is a common and costly neurodegenerative disease that is characterized by a long pre-clinical stage, including a prodromal stage of AD also referred to as mild cognitive impairment (MCI). Many, but not all, MCI patients progress to AD dementia at varying rates. Among MCI patients, late stage MCI patients progress to AD faster than early stage MCI patients: a faster annual cognitive decline with loss of memory. As potential disease modifying drugs are tested for their ability to delay AD dementia, it becomes critical to have tools that can better accurately predict MCI-to-AD dementia conversion. This would allow selection of cohorts most likely to decline during the study period, maximizing the ability to detect a drug/placebo difference. The proposed project will respond to PA-20-200: NIH Small Research Grant Program (Parent R03 Clinical Trial Not Allowed). In Aim 1, we will develop new deep survival models to predict MCI-to- AD dementia conversion using baseline measures, by using data from the AD Neuroimaging Initiative (ADNI) study. We will use data from the NIH funded Center for Neurodegeneration and Translational Neuroscience (CNTN) as the test data. The majority of the existing deep survival models were developed for right censored data, but MCI-to-AD dementia conversion is interval censored. When interval censored data are analyzed by using the methods developed for right censored data, the survival rates are always over-estimated that leads to the delay in AD dementia diagnosis. We will develop separate prediction models for early stage MCI and late stage MCI with biomarkers from cerebrospinal fluid (CSF), positron emission tomography (PET), magnetic resonance imaging (MRI), and clinical measures. Recently, several new biomarkers have been discovered for AD that are of interest to this study. These include plasma phosphorylated-tau181 (p-tau181), p-tau217, and the ratio of amyloid-β 42 and amyloid-β 40, and glial fibrillary acidic protein (GFAP). In progressive disorders like AD, most clinical events are very strongly correlated with the dynamics of the disease. In Aim 2, we will develop novel survival models for interval-censored data with time-varying longitudinal biomarker data. Built on our developed penalized survival model for interval censored data using baseline measures, we propose to extend that model to leverage longitudinal biomarker data to produce more accurate predictions about future conversion. Biomarkers along with clinical and demographic features were shown to improve the model performances for right censored data. We expect that the new survival models will be able to improve model prediction for interval censored data as compared to state-of-the-art models. This project will develop optimal deep survival models to predict MCI-to-AD dementia conversion for each MCI subgroup. The results of this project will provide important understanding of how each feature contributes to prediction of MCI-to-AD dementia conversion.
项目概要/摘要 阿尔茨海默病 (AD) 是一种常见且昂贵的神经退行性疾病,其特点是长期病程 临床前阶段,包括 AD 的前驱阶段,也称为轻度认知障碍 (MCI)。 许多(但不是全部)MCI 患者以不同的速度进展为 AD 痴呆,其中 MCI 患者处于晚期。 MCI 患者进展为 AD 的速度比早期 MCI 患者更快:年度认知能力下降更快 随着潜在的疾病缓解药物延缓 AD 痴呆的能力被测试,它会导致记忆丧失。 拥有能够更准确地预测 MCI 到 AD 痴呆症转化的工具变得至关重要。 允许选择在研究期间最有可能下降的队列,最大限度地提高检测到的能力 拟议项目将响应 PA-20-200:NIH 小型研究资助计划。 (不允许进行母体 R03 临床试验)在目标 1 中,我们将开发新的深度生存模型来预测 MCI 到 - 使用 AD 神经影像倡议 (ADNI) 的数据,使用基线测量进行 AD 痴呆症转化 我们将使用来自 NIH 资助的神经变性和转化神经科学中心的数据。 (CNTN)作为测试数据大多数现有的深度生存模型都是为右删失开发的。 数据,但 MCI 到 AD 痴呆的转换是区间删失的。 使用为正确审查数据开发的方法,生存率总是被高估,导致 我们将为早期 MCI 和 AD 痴呆症开发单独的预测模型。 晚期 MCI,具有来自脑脊液 (CSF)、正电子发射断层扫描 (PET)、磁力的生物标志物 最近,已经发现了几种新的生物标志物。 本研究感兴趣的 AD 包括血浆磷酸化 tau181 (p-tau181)、p-tau217 和 进行性疾病中淀粉样蛋白-β 42 和淀粉样蛋白-β 40 以及胶质纤维酸性蛋白 (GFAP) 的比率。 与 AD 一样,大多数临床事件与疾病的动态密切相关,在目标 2 中,我们将这样做。 使用构建的时变纵向生物标志物数据开发新颖的间隔删失数据生存模型。 根据我们开发的使用基线测量的区间删失数据的惩罚生存模型,我们建议 扩展该模型以利用纵向生物标记数据来对未来进行更准确的预测 生物标志物以及临床和人口统计特征被证明可以改进模型。 我们期望新的生存模型能够改进模型。 与最先进的模型相比,对区间删失数据进行预测。该项目将开发最佳模型。 预测每个 MCI 亚组的 MCI 向 AD 痴呆转化的深度生存模型。 项目将提供对每个特征如何有助于 MCI 到 AD 预测的重要理解 痴呆症转化。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Guogen Shan其他文献

Guogen Shan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Guogen Shan', 18)}}的其他基金

Adaptive randomized designs for cancer clinical trials by using integer algorithms and exact Monte Carlo methods
使用整数算法和精确蒙特卡罗方法进行癌症临床试验的自适应随机设计
  • 批准号:
    10329938
  • 财政年份:
    2021
  • 资助金额:
    $ 8.61万
  • 项目类别:
Alzheimer's Disease: New Trial Designs for Emerging Challenges
阿尔茨海默病:应对新挑战的新试验设计
  • 批准号:
    10586025
  • 财政年份:
    2021
  • 资助金额:
    $ 8.61万
  • 项目类别:
Alzheimer's Disease: New Trial Designs for Emerging Challenges
阿尔茨海默病:应对新挑战的新试验设计
  • 批准号:
    10322454
  • 财政年份:
    2021
  • 资助金额:
    $ 8.61万
  • 项目类别:
Alzheimer's Disease: New Trial Designs for Emerging Challenges
阿尔茨海默病:应对新挑战的新试验设计
  • 批准号:
    10410110
  • 财政年份:
    2021
  • 资助金额:
    $ 8.61万
  • 项目类别:
Adaptive randomized designs for cancer clinical trials by using integer algorithms and exact Monte Carlo methods
使用整数算法和精确蒙特卡罗方法进行癌症临床试验的自适应随机设计
  • 批准号:
    10405326
  • 财政年份:
    2021
  • 资助金额:
    $ 8.61万
  • 项目类别:

相似国自然基金

基于神经退行性疾病前瞻性队列的新烟碱类杀虫剂暴露对阿尔茨海默病的影响及作用机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
基于miRNA介导ceRNA网络调控作用的防治阿尔茨海默病及认知障碍相关疾病药物的发现研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
LMTK1调控核内体转运介导阿尔茨海默病神经元Reserve机制研究
  • 批准号:
    81903703
  • 批准年份:
    2019
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
MBP酶切L1CAM介导的线粒体自噬在阿尔茨海默病中的作用和机制
  • 批准号:
    81901296
  • 批准年份:
    2019
  • 资助金额:
    20.5 万元
  • 项目类别:
    青年科学基金项目
基于自组装多肽纳米探针检测蛋白标志物用于阿尔茨海默病精准诊断的研究
  • 批准号:
    31900984
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
  • 批准号:
    10676358
  • 财政年份:
    2024
  • 资助金额:
    $ 8.61万
  • 项目类别:
Individual Predoctoral Fellowship
个人博士前奖学金
  • 批准号:
    10752036
  • 财政年份:
    2024
  • 资助金额:
    $ 8.61万
  • 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
  • 批准号:
    10749539
  • 财政年份:
    2024
  • 资助金额:
    $ 8.61万
  • 项目类别:
The Influence of Lifetime Occupational Experience on Cognitive Trajectories Among Mexican Older Adults
终生职业经历对墨西哥老年人认知轨迹的影响
  • 批准号:
    10748606
  • 财政年份:
    2024
  • 资助金额:
    $ 8.61万
  • 项目类别:
Small Molecule Degraders of Tryptophan 2,3-Dioxygenase Enzyme (TDO) as Novel Treatments for Neurodegenerative Disease
色氨酸 2,3-双加氧酶 (TDO) 的小分子降解剂作为神经退行性疾病的新疗法
  • 批准号:
    10752555
  • 财政年份:
    2024
  • 资助金额:
    $ 8.61万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了