Human-iPSC derived neuromuscular junctions as a model for neuromuscular diseases.
人 iPSC 衍生的神经肌肉接头作为神经肌肉疾病的模型。
基本信息
- 批准号:10727888
- 负责人:
- 金额:$ 39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-08 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAcetylcholineAddressAdultAmyotrophic Lateral SclerosisAnimal Disease ModelsAnimal ModelBiologicalBiological AssayBiological ModelsBrainC9ORF72CRISPR correctionCell LineCellsCentral Nervous SystemCharacteristicsChromosome 9Clinical TrialsCommunicationComplexDenervationDevelopmentDiseaseDisease modelDrug ScreeningEvaluationFoundationsFunctional disorderGenesGeneticGenotypeGoalsHumanIn VitroIndividualIntronsInvestigationMeasuresModelingMolecularMorphologyMotor NeuronsMusMuscleMuscle ContractionMutationNeuromuscular DiseasesNeuromuscular JunctionOrganismPathway interactionsPatientsPharmaceutical PreparationsPhasePhased Innovation AwardsPhenotypePhysiologicalPositioning AttributePredispositionPreventionProcessProtocols documentationReportingReproducibilitySignal TransductionSkeletal MuscleSpinal CordStem Cell ResearchSynaptic CleftSystemTestingTherapeuticValidationaxiondisease phenotypeeffective therapyexperienceexperimental studyfamilial amyotrophic lateral sclerosisfrontotemporal lobar dementia amyotrophic lateral sclerosishigh throughput screeninginduced pluripotent stem cellmulti-electrode arraysneuronal survivalnoveloptogeneticspreventreduce symptomsreinnervationspinal and bulbar muscular atrophystem cell modelstem cells
项目摘要
Motor neurons carry electrical signals from the brain through the spinal cord to ultimately generate muscle
contraction via the neuromuscular junction (NMJ). The mechanisms involved in initiating and maintaining
proper communication between the central nervous system and muscles are incredibly complex, and damage
in this communication is the cause of neuromuscular diseases (NMD), such as Amyotrophic Lateral Sclerosis
(ALS) and Spinal and Bulbar Muscular Atrophy (SBMA). While these disorders are among the most common
NMDs, there is currently no cure or effective treatment for them. The NMD field acknowledges that a
substantial number of drugs found to alleviate symptoms in animal models have failed in clinical trials. Even
though this highlights the importance of the development of humanized models, a caveat of converting studies
into iPSC models is the focus on single cells in detriment of the complex systems of the adult organism. In the
NMD field specifically, iPSC investigations have largely focused on addressing motor neuron phenotypes that
would prevent their degeneration. Unfortunately, this approach is no longer sufficient, as prolonging motor
neuron survival does not assure re-innervation, nor does it guarantee prevention of denervation. Therefore, it is
crucial for therapeutic advancement in the NMD field that stem cell research needs to focus not only on
identifying cell-specific targets but also on testing those targets on functional NMJ systems that comprise both
iPSC-derived motor neurons and skeletal muscles. To achieve this goal, we have recently developed a 2D
functional human NMJ system comprised of both iPSC-derived motor neurons and skeletal muscles. Our
human iPSC-NMJ model is responsive to optogenetics and we are able to quantitatively measure NMJ function
in a multi-electrode array system. Hence, in this R61/R33 IGNITE Phased Innovation Award System, we
propose to leverage our newly developed NMJ system to scale functional and morphological assessment
(Aims 1 and 2) and validate the system by assaying NMJ-specific dysfunction using two NMDs: SBMA and
ALS (Aims 3 and 4). Our lab has previously established an iPSC model for SBMA (R01NS121374-01,
K01NS116119-01) and has extensive experience modeling this disease. Additionally, we selected the iPSCs
harboring G4C2 hexanucleotide repeat expansion on chromosome 9 within the first intron of C9ORF72, as it
represents is the most common genetic contributor to frontotemporal dementia (FTD) and ALS, accounting for
~10% of all cases of those diseases. Thus, successful completion of this R61/R33 will establish and validate a
novel model system to facilitate therapeutic discovery for NMDs.
运动神经元通过脊髓携带来自大脑的电信号,最终产生肌肉
通过神经肌肉接头(NMJ)进行收缩。参与启动和维持的机制
中枢神经系统和肌肉之间的正常沟通非常复杂,并且损伤
此通讯中的内容是神经肌肉疾病 (NMD) 的病因,例如肌萎缩侧索硬化症
(ALS)和脊髓和延髓肌萎缩症(SBMA)。虽然这些疾病是最常见的
NMD,目前尚无治愈或有效的治疗方法。 NMD 领域承认
在动物模型中发现的大量缓解症状的药物在临床试验中都失败了。甚至
尽管这凸显了开发人性化模型的重要性,但转换研究的一个警告
iPSC 模型的重点是单细胞,而不利于成体有机体的复杂系统。在
具体来说,在 NMD 领域,iPSC 研究主要集中于解决运动神经元表型,
可以防止它们的退化。不幸的是,这种方法已经不够了,因为延长了运动时间
神经元存活并不能保证重新神经支配,也不能保证防止去神经支配。因此,它是
对于 NMD 领域的治疗进展至关重要,干细胞研究不仅需要关注
识别细胞特异性靶点,同时也在包含两者的功能性 NMJ 系统上测试这些靶点
iPSC 衍生的运动神经元和骨骼肌。为了实现这一目标,我们最近开发了一个 2D
功能性人类 NMJ 系统由 iPSC 衍生的运动神经元和骨骼肌组成。我们的
人类 iPSC-NMJ 模型对光遗传学有反应,我们能够定量测量 NMJ 功能
在多电极阵列系统中。因此,在这个R61/R33 IGNITE阶段性创新奖励体系中,我们
建议利用我们新开发的 NMJ 系统来扩展功能和形态评估
(目标 1 和 2)并通过使用两种 NMD 分析 NMJ 特异性功能障碍来验证系统:SBMA 和
ALS(目标 3 和 4)。我们实验室之前已经为SBMA建立了iPSC模型(R01NS121374-01,
K01NS116119-01),并且在模拟这种疾病方面拥有丰富的经验。此外,我们选择了 iPSC
在 C9ORF72 的第一个内含子内的 9 号染色体上包含 G4C2 六核苷酸重复扩增,因为它
代表是额颞叶痴呆 (FTD) 和 ALS 最常见的遗传因素,占
约占这些疾病所有病例的 10%。因此,成功完成 R61/R33 将建立并验证
促进 NMD 治疗发现的新型模型系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Helen C Miranda其他文献
Helen C Miranda的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Helen C Miranda', 18)}}的其他基金
Study of AR transcriptional network in stem cell model of SBMA
SBMA干细胞模型中AR转录网络的研究
- 批准号:
10373083 - 财政年份:2021
- 资助金额:
$ 39万 - 项目类别:
Study of AR transcriptional network in stem cell model of SBMA
SBMA干细胞模型中AR转录网络的研究
- 批准号:
10184227 - 财政年份:2021
- 资助金额:
$ 39万 - 项目类别:
Study of AR transcriptional network in stem cell model of SBMA
SBMA干细胞模型中AR转录网络的研究
- 批准号:
10581556 - 财政年份:2021
- 资助金额:
$ 39万 - 项目类别:
Study of SBMA mutant AR transcriptional network in stem cell-derived motor neurons and skeletal muscle
干细胞源性运动神经元和骨骼肌中SBMA突变体AR转录网络的研究
- 批准号:
10599883 - 财政年份:2020
- 资助金额:
$ 39万 - 项目类别:
Study of SBMA mutant AR transcriptional network in stem cell-derived motor neurons and skeletal muscle
干细胞源性运动神经元和骨骼肌中SBMA突变体AR转录网络的研究
- 批准号:
10400920 - 财政年份:2020
- 资助金额:
$ 39万 - 项目类别:
相似国自然基金
特异阻断α7乙酰胆碱受体的新型芋螺肽先导药物的发现
- 批准号:42376112
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
烟碱型乙酰胆碱受体变异介导普通大蓟马对多杀菌素抗性机制研究
- 批准号:32360663
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
胆碱能神经元单囊泡胞吐释放乙酰胆碱的多维度电化学分析及应用研究
- 批准号:22374005
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
伪旋毛虫乙酰胆碱酯酶破坏肠道ILC2s的ChAT-ACh通路实现免疫逃逸的机制研究
- 批准号:32302960
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
神经肽Y-Y1受体与α7烟碱型乙酰胆碱受体交互作用减轻急性肺损伤的机制研究
- 批准号:82300019
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Goblet cells and intestinal immune response in alcohol-associated liver disease
酒精相关性肝病中的杯状细胞和肠道免疫反应
- 批准号:
10681329 - 财政年份:2022
- 资助金额:
$ 39万 - 项目类别:
Goblet cells and intestinal immune response in alcohol-associated liver disease
酒精相关性肝病中的杯状细胞和肠道免疫反应
- 批准号:
10446819 - 财政年份:2022
- 资助金额:
$ 39万 - 项目类别:
Project 1: Modeling brain-state-dependent fluid flow and clearance in mice and humans
项目 1:模拟小鼠和人类大脑状态依赖性液体流动和清除
- 批准号:
10516501 - 财政年份:2022
- 资助金额:
$ 39万 - 项目类别:
Goblet cells and intestinal immune response in alcohol-associated liver disease
酒精相关性肝病中的杯状细胞和肠道免疫反应
- 批准号:
10681329 - 财政年份:2022
- 资助金额:
$ 39万 - 项目类别:
Impact of Amyloid Beta on Hippocampal Neurophysiology and Calcium Activity across the Sleep-Wake Cycle
β 淀粉样蛋白对睡眠-觉醒周期中海马神经生理学和钙活性的影响
- 批准号:
9916679 - 财政年份:2017
- 资助金额:
$ 39万 - 项目类别: