Personalizing Circumpapillary Retinal Nerve Fiber Layer Thickness Norms for Glaucoma
个性化青光眼环视乳头视网膜神经纤维层厚度标准
基本信息
- 批准号:10728042
- 负责人:
- 金额:$ 55.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-30 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AblationAgeAge related macular degenerationAnatomyArtificial IntelligenceAttentionBlindnessBlood VesselsCaringClinicalComplexCustomDataData SetDevicesDiabetic RetinopathyDiagnosisDiameterEarExclusionEyeFundusGenderGermanyGlaucomaImageIndividualIndividual AdjustmentInner Limiting MembraneLasersLassoLengthLinear RegressionsLocationManualsMapsMassachusettsMeasurementMeasuresModelingMonitorMotivationNeural Network SimulationOphthalmoscopyOptic DiskOptical Coherence TomographyPatientsPerformancePopulation StudyPrincipal Component AnalysisPublic HealthRetinaScanningSpecialistStructureSurfaceTechnologyTestingThickTorsionTrainingValidationVariantVisual Fieldsclinical careclinically relevantconvolutional neural networkdeep learning modeldesignfeature extractionfovea centralisfunctional lossfundus imaginghigh dimensionalityimprovedinnovationnovelretinal imagingretinal nerve fiber layersuccess
项目摘要
Project Summary
Motivation and Hypotheses: The circumpapillary RNFL thickness (cpRNFLT) measured by circle scan is
routinely used for glaucoma diagnosis. Precise cpRNFLT norms are important for assessing cpRNFLT
abnormalities, while current optical coherence tomography (OCT) devices used in glaucoma care only adjust
the cpRNFLT norms for age. Prior studies attempted to adjust cpRNFLT norms for retinal anatomy either by
manually delineated features such as blood vessel location and disc-fovea angle or standard clinical metrics
such as scan diameter and axial length, while manual feature extraction is laborious and standard clinical
metrics are insufficient to represent the complex retinal anatomical variation. We hypothesize that we can
leverage artificial intelligence (AI) modeling to (1) improve cpRNFLT norms by automatically adjusting for
retinal anatomy encoded by retinal imaging data, which can be then used to (2) improve glaucoma diagnosis.
Aim 1: Developing AI-based models to personalize cpRNFLT norms with individual retinal anatomy.
Healthy subject data from the Leipzig population-based study will be used to develop Lasso linear regression
and deep learning models to adjust pointwise cpRNFLT norms for retinal anatomy represented by inner limiting
membrane (ILM) maps and scanning laser ophthalmoscopy (SLO) fundus images. 60%, 20% and 20% of the
entire dataset will be used for training, validation and testing, respectively. The cpRNFLT norm accuracy will be
measured by mean absolute error and R2. For the Lasso model, we will apply principal component analysis
followed by uniform manifold approximation and projection to extract retinal anatomical features from the ILM
map and SLO fundus image. For the deep learning model, we will use both the pre-trained deep learning
model ResNet-50 and a custom designed convolutional neural network ignoring missing imaging values.
Aim 2: Clinical relevance validation for the personalized cpRNFLT norms based on individual retinal
anatomy. Glaucoma patient data from Massachusetts Eye and Ear will be used to demonstrate the clinical
relevance of our personalized cpRNFLT norms with Lasso linear regression and deep learning models. The
pointwise cpRNFLT deviation percentiles will be used to predict accompanying VFs. Mean absolute error and
R2 on the testing subset will be used to evaluate model performance. Paired t-test will be performed to
compare if using cpRNFLT deviation percentiles normalized by our personalized cpRNFLT norms can better
predict VFs compared with by the standard cpRNFLT norms only adjusting for age, gender and scan diameter.
For the deep learning model, a 1D convolutional neural network enhanced by attention units will be developed.
Main Deliverables and Public Health Impacts: This project will construct personalized cpRNFLT norms by
automatically adjusting for individual retinal anatomy using retinal imaging data with cutting edge AI
technology. The success of this project may have a great impact to improve clinical care for glaucoma patients.
项目概要
动机和假设:通过圆形扫描测量的周围乳头状 RNFL 厚度 (cpRNFLT) 为
常规用于青光眼诊断。精确的 cpRNFLT 规范对于评估 cpRNFLT 很重要
异常,而目前用于青光眼护理的光学相干断层扫描 (OCT) 设备只能调整
cpRNFLT 年龄标准。先前的研究试图通过以下方式调整视网膜解剖学的 cpRNFLT 规范:
手动描绘的特征,例如血管位置和椎间盘中央凹角度或标准临床指标
例如扫描直径和眼轴长度,而手动特征提取费力且标准临床
指标不足以代表复杂的视网膜解剖变化。我们假设我们可以
利用人工智能 (AI) 建模 (1) 通过自动调整来改进 cpRNFLT 规范
由视网膜成像数据编码的视网膜解剖结构,可用于 (2) 改善青光眼诊断。
目标 1:开发基于人工智能的模型,根据个体视网膜解剖结构个性化 cpRNFLT 规范。
来自莱比锡基于人群的研究的健康受试者数据将用于开发 Lasso 线性回归
和深度学习模型来调整以内限为代表的视网膜解剖学的逐点 cpRNFLT 规范
膜(ILM)图和扫描激光检眼镜(SLO)眼底图像。 60%、20% 和 20%
整个数据集将分别用于训练、验证和测试。 cpRNFLT 范数准确度为
通过平均绝对误差和 R2 测量。对于 Lasso 模型,我们将应用主成分分析
随后进行均匀流形逼近和投影,从 ILM 中提取视网膜解剖特征
地图和 SLO 眼底图像。对于深度学习模型,我们将使用预训练的深度学习
模型 ResNet-50 和定制设计的卷积神经网络忽略缺失的成像值。
目标 2:基于个体视网膜的个性化 cpRNFLT 规范的临床相关性验证
解剖学。来自马萨诸塞州眼耳科的青光眼患者数据将用于证明临床
我们的个性化 cpRNFLT 规范与 Lasso 线性回归和深度学习模型的相关性。这
逐点 cpRNFLT 偏差百分位数将用于预测伴随的 VF。平均绝对误差和
测试子集上的 R2 将用于评估模型性能。将进行配对 t 检验
比较使用通过我们的个性化 cpRNFLT 规范标准化的 cpRNFLT 偏差百分位数是否可以更好
与仅调整年龄、性别和扫描直径的标准 cpRNFLT 规范相比,预测 VF。
对于深度学习模型,将开发由注意力单元增强的一维卷积神经网络。
主要可交付成果和公共卫生影响:该项目将通过以下方式构建个性化 cpRNFLT 规范:
使用尖端人工智能的视网膜成像数据自动调整个体视网膜解剖结构
技术。该项目的成功可能会对改善青光眼患者的临床护理产生巨大影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mengyu Wang其他文献
Mengyu Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mengyu Wang', 18)}}的其他基金
Relationship between Glaucoma and the Three-Dimensional Optic Nerve Head Related Structure
青光眼与三维视神经头相关结构的关系
- 批准号:
10316448 - 财政年份:2021
- 资助金额:
$ 55.7万 - 项目类别:
Relationship between Glaucoma and the Three-Dimensional Optic Nerve Head Related Structure
青光眼与三维视神经头相关结构的关系
- 批准号:
10594994 - 财政年份:2021
- 资助金额:
$ 55.7万 - 项目类别:
Relationship between Glaucoma and the Three-Dimensional Optic Nerve Head Related Structure
青光眼与三维视神经头相关结构的关系
- 批准号:
10332738 - 财政年份:2021
- 资助金额:
$ 55.7万 - 项目类别:
相似国自然基金
年龄相关性黄斑变性治疗中双靶向药物递释策略及其机制研究
- 批准号:82301217
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
GNAS介导OPN4-PLCβ4-TRPC6/7通路调节自主感光视网膜神经节细胞在年龄相关性黄斑变性中的作用机制研究
- 批准号:82301229
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
HTRA1介导CTRP5调控脂代谢通路在年龄相关性黄斑变性中的致病机制研究
- 批准号:82301231
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
视网膜色素上皮细胞中NAD+水解酶SARM1调控自噬溶酶体途径参与年龄相关性黄斑变性的机制研究
- 批准号:82301214
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向年龄相关性黄斑变性诊断的迁移学习算法研究
- 批准号:62371328
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
相似海外基金
Polypharmacological approach to treatment of Stargardt disease
治疗 Stargardt 病的多药理学方法
- 批准号:
10561110 - 财政年份:2023
- 资助金额:
$ 55.7万 - 项目类别:
Investigating the function and mechanism of interleukin 7 receptor-expressing pro-angiogenic macrophages during experimental choroidal neovascularization
研究表达白细胞介素7受体的促血管生成巨噬细胞在实验性脉络膜新生血管形成过程中的功能和机制
- 批准号:
10563645 - 财政年份:2023
- 资助金额:
$ 55.7万 - 项目类别:
Regulators of Photoreceptor Aerobic Glycolysis in Retinal Health and Disease
视网膜健康和疾病中光感受器有氧糖酵解的调节因子
- 批准号:
10717825 - 财政年份:2023
- 资助金额:
$ 55.7万 - 项目类别: