Alzheimer's disease drug development

阿尔茨海默病药物开发

基本信息

  • 批准号:
    10688806
  • 负责人:
  • 金额:
    $ 24.02万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
  • 资助国家:
    美国
  • 起止时间:
  • 项目状态:
    未结题

项目摘要

Overview: Evidence from clinical and preclinical studies indicates that basal inflammatory status increases as a function of normal aging, and progressive development of a mild pro-inflammatory state closely associates with the major degenerative diseases of the elderly (Holmes et al., Neurology 73:768-74, 2009; Heneka et al., Lancet Neurol 14:388-405, 2015). Hallmarks of aging include increased oxidative stress, lipid peroxidation and mitochondrial and DNA damage, particularly in brain. Microarray studies indicate a rise in inflammatory and pro-oxidant genes with a decline in growth, anti-inflammatory and anti-oxidant genes in the brain of older vs. adult rodents (Cribbs et al., J Neuroinflammation 9:179, 2012). In line with this, levels of brain pro-inflammatory cytokines are elevated with age in rodents and humans, and several regulatory molecules and anti-inflammatory cytokines reduced (Deleidi et al., Front Neurosci 9:172, 2015). Microglia are implicated as the major culprit of this ensuing neuroinflammation. Correcting the overproduction of pro-inflammatory cytokines by microglia may mitigate a broad number of neurodegenerative disorders prevalent in the elderly, and, in particular Alzheimers disease (AD). However, finding an appropriate drug target to safely and effectively achieve this has thus far proved difficult, and likely accounts for many of the numerous failures of clinical trials of anti-inflammatory agents in AD and associated disorders. Tumor necrosis factor-alpha (TNF) is a key pro-inflammatory cytokine generated by microglia. On release, TNF may initiate a self-propagating cycle of unchecked inflammation (Jung et al., Front Cell Dev Biol 7:313, 2019). Pharmacologic intervention to interrupt this cycle may be beneficial in the setting of neuroinflammation-mediated diseases. In 1993, Moreira et al. (J Exp Med 177:1675-80, 1993) described studies showing that the drug thalidomide (THAL) was able to lower TNF protein levels post-transcriptionally by accelerating degradation of its mRNA. Unfortunately, THAL is not a particularly potent TNF lowering agent and is associated with serious teratogenic adverse effects to embryos in utero, sedation and peripheral neuropathy at clinical doses (Calabrese & Fleischer, Am J Med 108:487-95, 2000; DeCourt et al., Curr Alzheimer Res 14:403-411, 2017). Nevertheless, the observation of THALs TNF lowering activity supported studies to differentiate these actions, understand THALs TNF structure/activity relationship and develop more potent analogs. In principle, the identification of analogs with enhanced anti-TNF activity and reduced teratogenic and neurotoxic effects may provide a viable treatment for neuroinflammatory and other inflammatory diseases. Our chemistry modifications to the backbone of THAL and newer analogs (namely pomalidomide (POM)) have generated a library of novel agents (US patents: 7,973,057 and 8,927,725, and Application No. 62/235,105). Our focus is to identify well-tolerated drug-like compounds with more potent anti-TNF activity from our generated library, and develop these as experimental drugs to characterize the role of the neuroinflammatory component in and to treat AD and associated disorders. Problem/Focused Aims: AD is a complex disorder that manifests as progressive dementia with few other symptoms. With a long meandering course, AD is associated with deposits of amyloid-beta protein (AB) of 40 and 42 amino acids as much as 20 years prior to development of dementia. It also induces intracellular accumulation of the microtubule-associated protein Tau (MAPT) as neurofibrillary tangles (NFTs) that correlate more closely with the extent of dementia (Sambamurti et al. Curr Alzheimer Res 3:81-90, 2006; Baranello et al. Curr Alzheimer Res 12:32-46, 2015). NFTs arise some 10 years after AB, and brain atrophy follows after 5 more years. However, the resilience and redundancy of the nervous system protects affected subjects from dementia for approx. 5 further years after the detection of atrophy by brain image analysis. The discovery that familial AD (FAD) mutations in AB precursor protein (APP) and presenilins (PSEN1) and 2 (PSEN2) increase AB42, have placed amyloid at the Occams razor of AD. The finding that the E4 variant of apolipoprotein E (APOE), detected in almost half the AD population, also fosters AB deposition further boosts the amyloid hypothesis. Despite the consistency of this finding, the time-dependent AB-triggered mechanisms of neuronal dysfunction and degeneration remain unclear; thereby making therapeutic intervention difficult. As AB oligomers and aggregates are tolerated over an extended time, their toxicity may not be the direct cause of neurodegeneration but, instead, an initiator of a cascade of events that become self-propagating and then drive AD progression. This premise may account for the failure of anti-amyloid therapies in clinical trials when administered late in the disease course (Becker et al., Nature Rev Drug Discov 13:156, 2014). The presence of soluble and insoluble AB and MAPT can induce microglia activation (McGeer Acta Neuropathol 126:479-97, 2013), and direct evidence of neuroinflammation in AD brain has been shown by in vivo PET imaging (Schuitemaker et al., Neurobiol Aging 34:12836, 2013). Notably, levels of pro-inflammatory cytokines are elevated in serum and CSF from AD patients, for TNF by as much as 25-fold (Tarkowski et al., J Clin Immunol 19:223-30, 1999). In MCI subjects that progress to develop AD, a rise in CSF TNF correlates with disease progression (Tarkowski et al., J Neurol Neurosurg Psychiatry 74:1200-5, 2003). Paralleling this, elevated expression of TNF is reported in the entorhinal cortex of 3xTg-AD mice prior to amyloid and tau pathology, and this increase associates with the onset of cognitive deficits in these mice and to later neuronal loss (Janelsins et al. J Neuroinflamm 2:23, 2005). We postulate that failure of protein homeostasis leads to accumulation of proteins (e.g., AB, APOE, MAPT) that induce microglial activation and a proinflammatory M1 response to instigate their removal. A continuing generation of protein (AB, APOE, MAPT) leads to maintenance of a chronic M1 response, impairment of transition to an anti-inflammatory M2 response (particularly in aging brain already vulnerable to inflammation) with ensuing neuronal impairment observed in animal models and in preclinical AD, which ultimately leads to cell death. Proinflammatory cytokines, like TNF, induce vascular changes to allow lymphocyte infiltration that may underpin reported cerebral vasculature leakiness of AD patients and related Tg mouse models. Moreover, TNF induces AB production in cellular and animal AD models, further increasing its accumulation and the entire cascade. Our focus is elucidate the time course of development of neuropathology accumulation of inflammatory cytokines and behavioral deficits in unique mouse models that may reflect the disease pathology more than the currently available ones. We also evaluate the treatment of these deficits with a clinically approved immunomodulator, POM, which lowers TNF generation as well as with the new more potent small molecule TNF synthesis inhibitors generated and patented for NIH by our research collaborative group within the Intramural Research Program of NIA. Our research has highlighted thionated analogs of POM as new AD therapeutic candidates that mitigate neuroinflammation, neuronal loss and behavioral impairments in AD cellular/animal models. Using the same models, the drug Phenserine likewise appears highly promising in mitigating programmed neuronal cell death/inflammation. We have extended our studies to evaluate these same compounds in models associated with COVID-19, as a 'cytokine storm' appears to be instigated across organs, including brain, in this disorder also.
概述:临床和临床前研究的证据表明,基础炎症状态随着正常衰老而增加,并且轻度促炎症状态的逐渐发展与老年人的主要退行性疾病密切相关(Holmes 等人,Neurology 73: 768-74,2009;Heneka 等人,Lancet Neurol 14:388-405,2015)。衰老的标志包括氧化应激增加、脂质过氧化以及线粒体和 DNA 损伤,特别是在大脑中。 微阵列研究表明,与成年啮齿动物相比,老年啮齿动物大脑中炎症和促氧化基因增加,而生长、抗炎和抗氧化基因下降(Cribbs 等人,J Neuroinflammation 9:179, 2012)。与此相一致的是,啮齿类动物和人类的大脑促炎细胞因子水平随着年龄的增长而升高,而一些调节分子和抗炎细胞因子水平则降低(Deleidi 等人,Front Neurosci 9:172, 2015)。小胶质细胞被认为是随后发生的神经炎症的罪魁祸首。纠正小胶质细胞过度产生的促炎细胞因子可能会减轻老年人中普遍存在的多种神经退行性疾病,特别是阿尔茨海默病(AD)。然而,迄今为止,找到合适的药物靶点来安全有效地实现这一目标已被证明是困难的,这可能是抗炎药治疗 AD 和相关疾病的临床试验中许多失败的原因。 肿瘤坏死因子-α (TNF) 是小胶质细胞产生的关键促炎细胞因子。释放后,TNF 可能会引发不受控制的炎症的自我繁殖周期(Jung 等人,Front Cell Dev Biol 7:313, 2019)。中断这一循环的药物干预可能对神经炎症介导的疾病有益。 1993 年,莫雷拉等人。 (J Exp Med 177:1675-80, 1993) 描述的研究表明药物沙利度胺 (THAL) 能够通过加速其 mRNA 的降解来降低转录后 TNF 蛋白水平。不幸的是,THAL不是特别有效的TNF降低剂,并且在临床剂量下与子宫内胚胎的严重致畸不良作用、镇静作用和周围神经病变有关(Calabrese & Fleischer, Am J Med 108:487-95, 2000;DeCourt 等人) ., 当前阿尔茨海默病研究 14:403-411, 2017)。然而,THALs TNF 降低活性的观察支持了区分这些作用、了解 THALs TNF 结构/活性关系并开发更有效的类似物的研究。原则上,鉴定具有增强的抗TNF活性并减少致畸和神经毒性作用的类似物可能为神经炎症和其他炎症疾病提供可行的治疗。我们对 THAL 和更新的类似物(即泊马度胺 (POM))骨架的化学修饰产生了一个新型药物库(美国专利:7,973,057 和 8,927,725,以及申请号 62/235,105)。我们的重点是从我们生成的库中识别具有更有效的抗 TNF 活性的耐受性良好的药物样化合物,并将它们开发为实验药物,以表征神经炎症成分在 AD 和相关疾病中的作用并治疗 AD 和相关疾病。 问题/重点目标:AD 是一种复杂的疾病,表现为进行性痴呆,几乎没有其他症状。 AD 的病程较长,蜿蜒曲折,与痴呆发生前 20 年的 40 和 42 个氨基酸的淀粉样β蛋白 (AB) 沉积有关。它还诱导微管相关蛋白 Tau (MAPT) 在细胞内积累为神经原纤维缠结 (NFT),与痴呆的程度更密切相关(Sambamurti 等人 Curr Alzheimer Res 3:81-90, 2006;Baranello 等人,2006 年)。当前阿尔茨海默病研究 12:32-46, 2015)。 AB 后约 10 年出现 NFT,5 年后出现脑萎缩。然而,神经系统的弹性和冗余可以保护受影响的受试者免受痴呆症大约 1 年的影响。又过了 5 年,通过大脑图像分析检测到萎缩。 AB 前体蛋白 (APP) 和早老素 (PSEN1) 和 2 (PSEN2) 中的家族性 AD (FAD) 突变会增加 AB42,这一发现将淀粉样蛋白置于 AD 的奥卡姆斯剃刀之下。在几乎一半 AD 人群中检测到的载脂蛋白 E (APOE) 的 E4 变体也促进 AB 沉积,这一发现进一步支持了淀粉样蛋白假说。尽管这一发现是一致的,但 AB 触发神经元功能障碍和变性的时间依赖性机制仍不清楚。从而使治疗干预变得困难。由于 AB 寡聚物和聚集体可以长期耐受,因此它们的毒性可能不是神经变性的直接原因,而是一系列事件的引发剂,这些事件会自我传播,然后驱动 AD 进展。这一前提可能是临床试验中在病程后期施用抗淀粉样蛋白疗法失败的原因(Becker 等人,Nature Rev Drug Discov 13:156, 2014)。可溶性和不溶性 AB 和 MAPT 的存在可诱导小胶质细胞激活 (McGeer Acta Neuropathol 126:479-97, 2013),体内 PET 成像已显示 AD 脑中神经炎症的直接证据 (Schuitemaker 等人,Neurobiol Aging) 34:12836, 2013)。值得注意的是,AD患者的血清和CSF中促炎细胞因子的水平对于TNF而言升高了多达25倍(Tarkowski等,J ClinImmunol 19:223-30, 1999)。在进展为AD的MCI受试者中,CSF TNF的升高与疾病进展相关(Tarkowski等人,J Neurol Neurosurg Psychiatry 74:1200-5,2003)。与此平行的是,据报道,在淀粉样蛋白和 tau 蛋白病理发生之前,3xTg-AD 小鼠的内嗅皮层中 TNF 的表达升高,这种升高与这些小鼠认知缺陷的发生以及随后的神经元损失有关(Janelsins 等人,J Neuroinflamm) 2:23, 2005)。 我们假设蛋白质稳态的失败导致蛋白质(例如 AB、APOE、MAPT)的积累,从而诱导小胶质细胞激活和促炎 M1 反应以促使其去除。蛋白质(AB、APOE、MAPT)的持续生成会导致慢性 M1 反应的维持,损害向抗炎 M2 反应的转变(特别是在已经易受炎症影响的衰老大脑中),并在动物模型中观察到随之而来的神经元损伤在临床前 AD 中,最终导致细胞死亡。促炎细胞因子(如 TNF)可诱导血管变化,从而允许淋巴细胞浸润,这可能是 AD 患者和相关 Tg 小鼠模型中报道的脑血管渗漏的基础。此外,TNF 在细胞和动物 AD 模型中诱导 AB 产生,进一步增加其积累和整个级联反应。我们的重点是阐明独特小鼠模型中炎症细胞因子积累和行为缺陷的神经病理学发展的时间过程,这些模型可能比目前可用的模型更能反映疾病病理学。我们还评估了使用临床批准的免疫调节剂 POM(可降低 TNF 生成)以及新的更有效的小分子 TNF 合成抑制剂(由我们的 NIA 校内研究计划内的研究合作小组为 NIH 开发并获得专利)对这些缺陷的治疗。 我们的研究强调 POM 的硫代类似物作为新的 AD 治疗候选药物,可减轻 AD 细胞/动物模型中的神经炎症、神经元损失和行为障碍。使用相同的模型,Phenserine 药物在减轻程序性神经元细胞死亡/炎症方面同样显得非常有前景。我们扩大了研究范围,在与 COVID-19 相关的模型中评估这些相同的化合物,因为在这种疾病中,“细胞因子风暴”似乎也在包括大脑在内的各个器官中引发。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nigel H. Greig其他文献

Rapid high-affinity transport of a chemotherapeutic amino acid across the blood-brain barrier.
化疗氨基酸快速高亲和力转运穿过血脑屏障。
  • DOI:
  • 发表时间:
    1992
  • 期刊:
  • 影响因子:
    11.2
  • 作者:
    Yoshiaki Takada;D. Vistica;Nigel H. Greig;David Purdon;Stanley I. Rapoport;Quentin R. Smith
  • 通讯作者:
    Quentin R. Smith
Chemotherapy of brain metastases: current status.
脑转移化疗:现状。
  • DOI:
  • 发表时间:
    1984
  • 期刊:
  • 影响因子:
    11.8
  • 作者:
    Nigel H. Greig
  • 通讯作者:
    Nigel H. Greig
ブチリルコリンエステラーゼ阻害によるグレリンシグナルの活性化を介した中枢ムスカリンM1受容体機能の亢進
通过丁酰胆碱酯酶抑制激活生长素释放肽信号增强中枢毒蕈碱 M1 受体功能
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    吾郷由希夫;東野功典;国本寿美子;塚田信司;Nigel H. Greig;松田敏夫;橋本均
  • 通讯作者:
    橋本均
Attenuation of cocaine-induced locomotor activity by butyrylcholinesterase.
丁酰胆碱酯酶减弱可卡因诱导的运动活性。
  • DOI:
  • 发表时间:
    1998
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Gilberto N. Carmona;Charles W. Schindler;M. Shoaib;R. Jufer;Edward J. Cone;Steven R. Goldberg;Nigel H. Greig;Qian;D. Gorelick
  • 通讯作者:
    D. Gorelick
Phensérine et posiphen pour le traitement d'affections neuro-psychiatriques et neurodégénératives
神经精神病学和神经退行性疾病情感特征的 Phensérine 和 Posiphen
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jack T. Rogers;Rudolph E. Tanzi;Robert D. Moir;Nigel H. Greig;Avi L. Friedlich
  • 通讯作者:
    Avi L. Friedlich

Nigel H. Greig的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nigel H. Greig', 18)}}的其他基金

Design And Development Of Experimental Therapeutics
实验疗法的设计和开发
  • 批准号:
    7132235
  • 财政年份:
  • 资助金额:
    $ 24.02万
  • 项目类别:
Design And Development Of Experimental Therapeutics
实验疗法的设计和开发
  • 批准号:
    6968788
  • 财政年份:
  • 资助金额:
    $ 24.02万
  • 项目类别:
Design And Development Of Experimental Therapeutics
实验疗法的设计和开发
  • 批准号:
    8736516
  • 财政年份:
  • 资助金额:
    $ 24.02万
  • 项目类别:
Neuroprotective role of GLP-1 receptor agonists
GLP-1 受体激动剂的神经保护作用
  • 批准号:
    9549287
  • 财政年份:
  • 资助金额:
    $ 24.02万
  • 项目类别:
Pro-inflammatory cytokine lowering anti-inflammatory drugs
降低促炎细胞因子的抗炎药
  • 批准号:
    10688902
  • 财政年份:
  • 资助金额:
    $ 24.02万
  • 项目类别:
Design And Development Of Experimental Therapeutics
实验疗法的设计和开发
  • 批准号:
    7732195
  • 财政年份:
  • 资助金额:
    $ 24.02万
  • 项目类别:
Neuroprotective role of GLP-1 receptor agonists
GLP-1 受体激动剂的神经保护作用
  • 批准号:
    7963934
  • 财政年份:
  • 资助金额:
    $ 24.02万
  • 项目类别:
Neuroprotective role of GLP-1 receptor agonists
GLP-1 受体激动剂的神经保护作用
  • 批准号:
    8148224
  • 财政年份:
  • 资助金额:
    $ 24.02万
  • 项目类别:
Design And Development Of Experimental Therapeutics
实验疗法的设计和开发
  • 批准号:
    6667915
  • 财政年份:
  • 资助金额:
    $ 24.02万
  • 项目类别:
Design And Development Of Experimental Therapeutics
实验疗法的设计和开发
  • 批准号:
    6530309
  • 财政年份:
  • 资助金额:
    $ 24.02万
  • 项目类别:

相似国自然基金

去泛素化酶USP5调控P53通路在伴E2A-PBX1成人ALL的致病机制研究
  • 批准号:
    81900151
  • 批准年份:
    2019
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
核基质结合区蛋白SATB1调控CCR7抑制急性T淋巴细胞白血病中枢浸润的作用与机制
  • 批准号:
    81870113
  • 批准年份:
    2018
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目
成人及儿童急性淋巴细胞白血病的基因组转录组生物信息学分析方法建立及数据分析
  • 批准号:
    81570122
  • 批准年份:
    2015
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
NR3C1基因突变在成人急性淋巴细胞白血病耐药与复发中的作用与机制研究
  • 批准号:
    81470309
  • 批准年份:
    2014
  • 资助金额:
    75.0 万元
  • 项目类别:
    面上项目
儿童和成人急性T淋巴细胞白血病中miRNA和转录因子共调控网络的差异性研究
  • 批准号:
    31270885
  • 批准年份:
    2012
  • 资助金额:
    80.0 万元
  • 项目类别:
    面上项目

相似海外基金

Milk fat globule-EGF factor 8 and hepatocyte apoptosis-induced liver wound healing response
乳脂肪球-EGF因子8与肝细胞凋亡诱导的肝脏创面愈合反应
  • 批准号:
    10585802
  • 财政年份:
    2023
  • 资助金额:
    $ 24.02万
  • 项目类别:
Therapeutic implications of purinergic receptor P2X4 in ischemic stroke
嘌呤能受体 P2X4 在缺血性中风中的治疗意义
  • 批准号:
    10711456
  • 财政年份:
    2022
  • 资助金额:
    $ 24.02万
  • 项目类别:
Exosome biology in Alzheimer's disease and concussion
阿尔茨海默病和脑震荡中的外泌体生物学
  • 批准号:
    10468223
  • 财政年份:
    2021
  • 资助金额:
    $ 24.02万
  • 项目类别:
Mitochondria and metabolism in neurodegeneration
神经退行性变中的线粒体和代谢
  • 批准号:
    10183972
  • 财政年份:
    2021
  • 资助金额:
    $ 24.02万
  • 项目类别:
Exosome biology in Alzheimer's disease and concussion.
阿尔茨海默病和脑震荡中的外泌体生物学。
  • 批准号:
    10317655
  • 财政年份:
    2021
  • 资助金额:
    $ 24.02万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了