Cytosolic Access and Instability of DNA nanoparticles
DNA 纳米颗粒的细胞质进入和不稳定性
基本信息
- 批准号:10701061
- 负责人:
- 金额:$ 24.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAnimal ModelArchitectureAwardBehaviorBiological ModelsBiological SciencesBiomedical EngineeringBuffersCRISPR/Cas technologyCalciumCancerousCell Culture TechniquesCell NucleusCellsConfocal MicroscopyCytosolDNADictyopteraDoseDrug CarriersEndocytosisEndosomesEngineeringEnvironmentFamily suidaeFibroblastsFluorescence Resonance Energy TransferGene SilencingGenesGoalsGrantHypoxiaImmuneIn VitroKineticsLearningLigandsLysosomesMammalian CellMapsMeasuresMentorshipMessenger RNAMicroinjectionsMusNanotubesNational Institute of Biomedical Imaging and BioengineeringNucleic AcidsOutcomePhysiologyProcessPropertyProtein BiosynthesisProteinsRegulationReporterResearchResolutionRoleScienceSeriesSiteSmall Interfering RNASpectrum AnalysisStructureSystemTechnical ExpertiseTestingTherapeuticTherapeutic AgentsTrainingTraining ProgramsTransfectionTransformed Cell LineTranslationsUntranslated RNAVesicleWorkWritingbiomaterial compatibilitycell typecytotoxicdelivery vehiclegene therapyimprovedin vitro Modelin vivo Modelinnovative technologiesnanoparticleneoplastic cellnucleasenucleic acid-based therapeuticsparticlepharmacologicphysical scienceprogramsprotein expressionreceptor mediated endocytosisrecruitself assemblytargeted treatmenttherapeutic RNAtherapeutic nanoparticlestooltumoruptake
项目摘要
PROJECT SUMMARY/ABSTRACT: A number of candidate therapies such as CRISPR-Cas9 and gene
silencing require the efficient delivery of functional nucleic acids to the cell cytosol and nucleus. Unfortunately,
such therapies currently lack proper delivery mechanisms, precluding their widespread applicability. Self-
assembled deoxyribonucleic acid (DNA) nanoparticles have shown potential as minimally cytotoxic
therapeutic carriers in cancerous and other in vitro and in vivo models. While evidence suggests that DNA
nanoparticles-based drug carriers can be taken up by mammalian cells via endocytosis, it is unknown
how these DNA nanoparticles can overcome the fate of endocytosis-triggered degradation to reach
the cytosol and, once there, can controllably maintain stability. With the enabling science explaining
their behavior and mechanisms of controlling their stability in the cell cytosol it will be possible to make bold
advances in engineering therapeutic delivery systems. To that end, the proposed work has two overarching
scientific payoffs. Payoff 1, induce endosomal escape and enhanced cytosolic accessibility of DNA
nanoparticles by the integration of calcium in their assembly process. Payoff 2, identify the rate of
breakdown and mechanisms of stabilization of DNA nanoparticles in different types of cell cytosols.
Innovative technologies will be the foci of the PI's training program and will be implemented to achieve the
project goals, namely, multi-step Förster resonance energy transfer spectroscopy for high-resolution
tracking of DNA nanoparticle inside the cell and in vitro cell microinjections enabling study of these
nanoparticles directly in the cytosolic environment. First, a DNA origami based nanotube will be tested for
structural stability in calcium-supplemented buffer. Thereafter, the nanotube will be used as a carrier for
the delivery of functional RNA molecules to representative fluorescent protein-expressing cells and checked
for its cytosolic reachability and efficacy in protein regulation after undergoing endocytosis. Second, small
(20 nm) DNA nanoparticles with branched architecture and non-canonical nucleic acids will be embedded
with multi-step FRET reporters for measuring structural integrity. These DNA nanoparticles will be
microinjected into live cells cytosolic region and their breakage be determined. Last, the cytosolic stability
of these DNA nanoparticles will be correlated with different types of mammalian cells with known cytosolic
variability (tumor, immune, and other cell types) in order to map the role of structurally diverse DNA
nanoparticles in targeting cells with different physiologies. The PI will also receive training in rigorous
analysis of in vitro research, lab management, and the prolific grant writing process, which will facilitate
their transition to an independent research program. Outcomes of this project will pave the way towards
developing more bio-compatible delivery systems, specifically for functional nucleic acid therapeutic agents
that are vital in the cell cytosol.
项目摘要/摘要:许多候选疗法,例如CRISPR-CAS9和GENE
沉默需要将功能核酸递送到细胞胞质和核。
目前,此类疗法缺乏适当的交付机制,因此排除了广泛的应用。
组装的脱氧核糖核酸(DNA)纳米颗粒已显示为最小细胞毒性的潜力
癌和其他体外和体内模型中的治疗载体。
基于纳米颗粒的药物载体可以通过哺乳动物细胞通过内吞作用来吸收
这些DNA纳米颗粒如何克服内吞作用触发的降解的命运到达
细胞质和一旦可以控制稳定性。
它们控制其在细胞胞质溶胶中稳定性的行为和机制,可以使大胆
工程治疗系统的进步。
科学收益。
纳米颗粒通过钙在组装过程中的整合。
DNA纳米颗粒稳定的分解和机制,不同类型的细胞胞质中。
创新技术将成为PI培训计划的焦点,并将实施以实现脚趾
项目目标,即高分辨率的多步förster共振能量传递光谱
跟踪细胞内的DNA纳米属和体外注射启用这些
纳米颗粒直接在胞质环境中。
钙补充的缓冲液的结构稳定性。
功能性RNA分子递送到抑制表达荧光蛋白的细胞并检查
因为胞质的蛋白质调节性是胞质的性能和疗效
(20 nm)具有分支结构和非当核酸的DNA纳米颗粒将嵌入
使用多步兵记者进行结构完整性。
将微型注射到活细胞中,并确定其胞质稳定性。
这些DNA纳米颗粒将与不同类型的cymmalian细胞相关
可变性(肿瘤,免疫和其他细胞类型),以绘制结构多样的DNA的作用
具有不同生理的靶向细胞中的纳米颗粒也将在严格的
分析体外研究,实验室管理和Prolitic赠款写作过程,这将有助于
他们过渡到独立研究计划。
开发更多与生物兼容的输送系统,该系统的功能性核酸性治疗剂的特殊性
在细胞细胞质中至关重要。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hybrid Nucleic Acid-Quantum Dot Assemblies as Multiplexed Reporter Platforms for Cell-Free Transcription Translation-Based Biosensors.
- DOI:10.1021/acssynbio.2c00394
- 发表时间:2022-11
- 期刊:
- 影响因子:4.7
- 作者:Divita Mathur;Meghna Thakur;S. A. Díaz;K. Susumu;M. Stewart;E. Oh;Scott A. Walper;Igor L. Medintz
- 通讯作者:Divita Mathur;Meghna Thakur;S. A. Díaz;K. Susumu;M. Stewart;E. Oh;Scott A. Walper;Igor L. Medintz
DNA origami presenting the receptor binding domain of SARS-CoV-2 elicit robust protective immune response.
- DOI:10.1038/s42003-023-04689-2
- 发表时间:2023-03-23
- 期刊:
- 影响因子:5.9
- 作者:
- 通讯作者:
Structural and optical variation of pseudoisocyanine aggregates nucleated on DNA substrates.
- DOI:10.1088/2050-6120/acb2b4
- 发表时间:2023-01-31
- 期刊:
- 影响因子:3.2
- 作者:Chiriboga M;Green CM;Mathur D;Hastman DA;Melinger JS;Veneziano R;Medintz IL;Díaz SA
- 通讯作者:Díaz SA
Tunable Electronic Structure via DNA-Templated Heteroaggregates of Two Distinct Cyanine Dyes.
- DOI:10.1021/acs.jpcc.2c04336
- 发表时间:2022-10-13
- 期刊:
- 影响因子:3.7
- 作者:Huff, Jonathan S.;Diaz, Sebastian A.;Barclay, Matthew S.;Chowdhury, Azhad U.;Chiriboga, Matthew;Ellis, Gregory A.;Mathur, Divita;Patten, Lance K.;Roy, Simon K.;Sup, Aaron;Biaggne, Austin;Rolczynski, Brian S.;Cunningham, Paul D.;Li, Lan;Lee, Jeunghoon;Davis, Paul H.;Yurke, Bernard;Knowlton, William B.;Medintz, Igor L.;Turner, Daniel B.;Melinger, Joseph S.;Pensack, Ryan D.
- 通讯作者:Pensack, Ryan D.
Uptake and stability of DNA nanostructures in cells: a cross-sectional overview of the current state of the art.
- DOI:10.1039/d2nr05868e
- 发表时间:2023-02-09
- 期刊:
- 影响因子:6.7
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Divita Mathur其他文献
Divita Mathur的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Divita Mathur', 18)}}的其他基金
Cytosolic Access and Instability of DNA nanoparticles
DNA 纳米颗粒的细胞质进入和不稳定性
- 批准号:
10400170 - 财政年份:2021
- 资助金额:
$ 24.9万 - 项目类别:
Cytosolic Access and Instability of DNA nanoparticles
DNA 纳米颗粒的细胞质进入和不稳定性
- 批准号:
10681601 - 财政年份:2021
- 资助金额:
$ 24.9万 - 项目类别:
Cytosolic Access and Instability of DNA nanoparticles
DNA 纳米颗粒的细胞质进入和不稳定性
- 批准号:
10215954 - 财政年份:2021
- 资助金额:
$ 24.9万 - 项目类别:
相似国自然基金
髋关节撞击综合征过度运动及机械刺激动物模型建立与相关致病机制研究
- 批准号:82372496
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
基于中医经典名方干预效应差异的非酒精性脂肪性肝病动物模型证候判别研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
利用肝癌动物模型开展化学可控的在体基因编辑体系的研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
雌激素抑制髓系白血病动物模型中粒细胞异常增生的机制
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
无菌动物模型与单细胞拉曼技术结合的猴与人自闭症靶标菌筛选及其机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Dynamic neural coding of spectro-temporal sound features during free movement
自由运动时谱时声音特征的动态神经编码
- 批准号:
10656110 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Identifying epigenetic factors in control of epidermal stem cell longevity in the adult skin
识别控制成人皮肤表皮干细胞寿命的表观遗传因素
- 批准号:
10723212 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
- 批准号:
10727940 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Hypothalamic Sleep-Wake Neuron Defects in Alzheimer’s disease
阿尔茨海默病中的下丘脑睡眠-觉醒神经元缺陷
- 批准号:
10770001 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
A Connectomic Analysis of a Developing Brain Undergoing Neurogenesis
正在经历神经发生的发育中大脑的连接组学分析
- 批准号:
10719296 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别: