Molecular mechanisms of infantile learning and memory
婴儿学习记忆的分子机制
基本信息
- 批准号:10684294
- 负责人:
- 金额:$ 69.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-10 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdultAgeAnimalsBehaviorBehavioralBiologicalBiological ProcessBrainBrain regionCell SeparationCellsChronicCognition DisordersCognitiveComplexDevelopmentDorsalEpisodic memoryFemaleFunctional disorderFundingGene ExpressionGenetic TranscriptionGenetically Engineered MouseHippocampusHourImaging technologyImmediate-Early GenesImmunohistochemistryIn SituIndividualInfantInvestigationKnowledgeLearningLifeLife ExperienceLinkMapsMedialMemoryMental HealthMessenger RNAMolecularMolecular ProfilingMusNeurodevelopmental DisabilityNeurodevelopmental DisorderNeuronsPathway interactionsPersonalityPrefrontal CortexProcessPsychopathologyRattusRecoveryRiboTagRibosomesRodent ModelRoleShapesSourceStainsStimulusStressSystemTechnologyTemporal LobeTestingTimeTranscriptTranslatingTraumaVisualWorkbasebehavioral studycell typecognitive abilitycritical developmental periodcritical perioddesigner receptors exclusively activated by designer drugsearly experienceexcitatory neuronexperienceexperimental studygenetic technologyinfancyinfant animalinhibitory neuroninterestmalemembermemory processmemory recallmolecular imagingnoveloperationpreventresponsesensory systemsexsocialspatial memorytraittranscriptometranscriptome sequencingtranscriptomicstranslatomevirtual
项目摘要
Project Summary
Behavioral studies have shown that early life experience significantly shapes the development of brain abilities.
Accordingly, if early experiences are highly unbalanced, e.g. if they occur under the influence of chronic
challenges or stresses, the individual's personality will develop specific traits, including some that are
associated with severe psychopathologies. Despite these extensive behavioral characterizations, very little is
known about the biological mechanisms underlying learning and memory in early life, with the exception
of the effects of trauma and stress. Understanding the mechanisms underlying learning and memory in
early development is key for comprehending how the learning and memory systems are built and
function throughout life, as well as to better elucidate the deficits associated to neurodevelopmental
disabilities.
One of the most important systems operating in the brain is the medial temporal lobe-dependent memory
system, which processes information about episodic, spatial, contextual and social experiences. Until recently
it was believed that this memory system does not function in infancy because it is developmentally immature,
and only begins to be involved late in development. However, recent studies in rodent models, including our
own, showed that episodic and spatial forms of learning require the function of biological mechanisms in the
dorsal hippocampus (dHC), a main region, together with the medial prefrontal cortex (mPFC), of the medial
temporal lobe memory system. Despite this recent progress, knowledge of the biological and system-level
mechanisms of infantile, hippocampus-dependent learning and memory is lacking.
To fill this knowledge gap we propose to employ rodent models of episodic and spatial learning, genetically
engineered mouse models, molecular imaging technology, spatial transcriptomics and RiboTag mouse
technology combined with omic analyses to pursue the following specific aims: (1) To map the distribution at
a system level (dHC and mPFC) of the cellular networks activated in response to episodic learning in infancy
and in memory recovery following reminders at later ages, and to test the malleability and roles of recovered
infantile memories in adult behavior. (2) To comprehensively profile in situ dHC and mPFC gene expression at
the level of the whole transcriptome, as well as obtain a comprehensive translatome specifically regulated in
excitatory and inhibitory neurons, in response to learning in both infant and adult brains.
These experiments will provide an unprecedented amount of novel information regarding the biological and
system-level mechanisms underlying infantile learning and memory, as well as an invaluable source of
knowledge for generating novel hypotheses regarding neurodevelopmental and adult cognitive disorders.
项目概要
行为研究表明,早期生活经历显着影响大脑能力的发展。
因此,如果早期经历高度不平衡,例如如果它们发生在慢性病的影响下
当面临挑战或压力时,个人的性格会发展出特定的特征,包括一些
与严重的精神病理学有关。尽管有这些广泛的行为特征,但很少有
了解早期生活中学习和记忆的生物机制,但例外
创伤和压力的影响。了解学习和记忆的潜在机制
早期发展是理解学习和记忆系统如何构建的关键
终生功能,以及更好地阐明与神经发育相关的缺陷
残疾。
大脑中最重要的系统之一是内侧颞叶依赖性记忆
系统,处理有关情景、空间、情境和社会体验的信息。直到最近
人们认为这种记忆系统在婴儿期不起作用,因为它发育不成熟,
并且直到后期才开始参与开发。然而,最近对啮齿动物模型的研究,包括我们的
自己的研究表明,情景和空间形式的学习需要生物机制的功能
背侧海马 (dHC) 是内侧前额皮质 (mPFC) 的一个主要区域
颞叶记忆系统。尽管最近取得了进展,但生物和系统层面的知识
缺乏婴儿期依赖海马体的学习和记忆机制。
为了填补这一知识空白,我们建议采用情景和空间学习的啮齿动物模型,从遗传上讲
工程小鼠模型、分子成像技术、空间转录组学和 RiboTag 小鼠
技术与组学分析相结合,以实现以下具体目标:(1)绘制分布图
响应婴儿期情景学习而激活的细胞网络的系统级(dHC 和 mPFC)
并在晚年提醒后进行记忆恢复,并测试恢复后的可塑性和作用
成人行为中的婴儿记忆。 (2) 全面分析 dHC 和 mPFC 基因在
整个转录组的水平,以及获得一个全面的翻译组,特别是在
兴奋性和抑制性神经元,对婴儿和成人大脑的学习做出反应。
这些实验将提供前所未有的大量关于生物和
婴儿学习和记忆的系统级机制,以及宝贵的资源
生成有关神经发育和成人认知障碍的新假设的知识。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CRISTINA M ALBERINI其他文献
CRISTINA M ALBERINI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CRISTINA M ALBERINI', 18)}}的其他基金
Molecular mechanisms of infantile learning and memory
婴儿学习记忆的分子机制
- 批准号:
10297488 - 财政年份:2021
- 资助金额:
$ 69.1万 - 项目类别:
Molecular mechanisms of infantile learning and memory
婴儿学习记忆的分子机制
- 批准号:
10487565 - 财政年份:2021
- 资助金额:
$ 69.1万 - 项目类别:
Astrocytic-neuronal mechanisms in memory formation and cognitive impairments
记忆形成和认知障碍中的星形胶质细胞神经元机制
- 批准号:
8836594 - 财政年份:2013
- 资助金额:
$ 69.1万 - 项目类别:
Astrocytic-neuronal mechanisms in memory formation and cognitive impairments
记忆形成和认知障碍中的星形胶质细胞神经元机制
- 批准号:
9275021 - 财政年份:2013
- 资助金额:
$ 69.1万 - 项目类别:
Astrocytic-neuronal mechanisms in memory formation and cognitive impairments
记忆形成和认知障碍中的星形胶质细胞神经元机制
- 批准号:
8531553 - 财政年份:2013
- 资助金额:
$ 69.1万 - 项目类别:
Astrocytic-neuronal mechanisms in memory formation and cognitive impairments
记忆形成和认知障碍中的星形胶质细胞神经元机制
- 批准号:
8690982 - 财政年份:2013
- 资助金额:
$ 69.1万 - 项目类别:
相似国自然基金
单核细胞产生S100A8/A9放大中性粒细胞炎症反应调控成人Still病发病及病情演变的机制研究
- 批准号:82373465
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
成人型弥漫性胶质瘤患者语言功能可塑性研究
- 批准号:82303926
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SERPINF1/SRSF6/B7-H3信号通路在成人B-ALL免疫逃逸中的作用及机制研究
- 批准号:82300208
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于动态信息的深度学习辅助设计成人脊柱畸形手术方案的研究
- 批准号:82372499
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
The neural underpinnings of speech and nonspeech auditory processing in autism: Implications for language
自闭症患者言语和非言语听觉处理的神经基础:对语言的影响
- 批准号:
10827051 - 财政年份:2024
- 资助金额:
$ 69.1万 - 项目类别:
Computational and neural signatures of interoceptive learning in anorexia nervosa
神经性厌食症内感受学习的计算和神经特征
- 批准号:
10824044 - 财政年份:2024
- 资助金额:
$ 69.1万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 69.1万 - 项目类别:
Developing Real-world Understanding of Medical Music therapy using the Electronic Health Record (DRUMMER)
使用电子健康记录 (DRUMMER) 培养对医学音乐治疗的真实理解
- 批准号:
10748859 - 财政年份:2024
- 资助金额:
$ 69.1万 - 项目类别: