How SSB Regulates YoaA-chi's Function in DNA Damage Repair
SSB 如何调节 YoaA-chi 的 DNA 损伤修复功能
基本信息
- 批准号:10684693
- 负责人:
- 金额:$ 4.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-15 至 2025-08-14
- 项目状态:未结题
- 来源:
- 关键词:ATP HydrolysisATP phosphohydrolaseAffectAffinityBindingBinding ProteinsBinding SitesBiochemicalBiological AssayBiological ModelsBypassCell Cycle ArrestCell DeathCell SurvivalCellsClosure by clampComplexCoupledDNADNA DamageDNA Double Strand BreakDNA Polymerase IIIDNA RepairDNA Repair EnzymesDNA Repair PathwayDNA biosynthesisDNA lesionDNA replication forkDNA-Binding ProteinsDataDiseaseDissociationEnvironmentEquilibriumEscherichia coliEssential GenesExogenous FactorsExposure toFanconi&aposs AnemiaFellowshipFloridaFluorescence Resonance Energy TransferGenesGeneticGenetic DiseasesGenetic RecombinationGenome StabilityGenomic InstabilityGoalsHealthHoloenzymesHumanIn VitroLeadLeftLesionLifeLocationMalignant NeoplasmsMeasuresMediatingMutationNucleotide Excision RepairPathway interactionsPatientsPoisonPredispositionPrimer ExtensionProteinsResearchSS DNA BPSingle-Stranded DNASiteSourceStretchingTechniquesThymidineToxinTrainingUltraviolet RaysUniversitiesWorkXeroderma PigmentosumZidovudineanalogcancer riskds-DNAhelicaseinsightmutantnovelparalogous genepollutantpreventrecruitrepairedtherapy developmenttool
项目摘要
Project Summary/Abstract
DNA is frequently damaged by exogenous sources ranging from exposure to UV light to toxic chemicals in the
environment. To fix the damage caused by these agents and maintain genomic stability, cells have multiple
efficient DNA repair mechanisms. Some damage, though, will inevitably escape repair if the burden of damage
is too high. Unrepaired DNA damage can block DNA synthesis and have serious consequences for the cell
and for human health. A study by Brown et al. used azidothymidine (AZT) as a tool to block replication in E.
coli to discover essential genes for resolving stalled replication forks. AZT is a thymidine analog that can be
incorporated during synthesis and prevents primer extension, causing replication to stall and single-strand
DNA gaps to form. Two genes, yoaA and holC, were discovered to be vital for resolving stalled DNA replication
in AZT treated E. coli cells. The yoaA gene encodes for an XPD/Rad3-like helicase. The four human XPD/Rad-
3 like helicases (FANCJ, XPD, RTEL1, and CHLR1) contribute to genomic stability and if compromised, can
cause various genetic diseases and an increased risk of cancer. The holC gene encodes for chi, which is a
part of two different complexes. Chi is an accessory subunit of the DNA polymerase III clamp loader and forms
a complex with the holoenzyme. Chi also binds YoaA to create a functional YoaA-chi helicase. Chi is known to
bind single-stranded DNA binding protein (SSB) and this interaction is necessary for resolving lesions that stall
replication. SSB is an essential protein found in all domains of life, coats single-stranded (ss) DNA, and
interacts with over a dozen DNA repair and replication proteins. How YoaA, chi, and SSB work together to
resolve damage that halts replication is unknown. Therefore, this fellowship aims to characterize SSB
interactions with YoaA-chi with biochemical techniques to understand this novel repair pathway. It is
hypothesized SSB regulates the ability of YoaA-chi to unwind double-stranded DNA to resolve lesions at the
replication fork based on preliminary data which shows that the helicase activity of YoaA-chi is decreased in
the presence of SSB. How SSB binds YoaA-chi will be elucidated, be it either by the known location on chi or
by a new interaction possibly on YoaA (aim 1). Because SSB regulates a variety of DNA-binding proteins
through various mechanisms, several facets of YoaA-chi that SSB could regulate will be investigated. It will be
determined if SSB changes the substrate affinity of YoaA-chi (aim 2) or the helicase activity of YoaA-chi (aim
3). This will be the first study into how SSB regulates YoaA-chi and the contribution these proteins have in a
novel DNA repair mechanism. This research will also provide significant contributions in my training to become
an independent biochemist and the environment at the University of Florida will allow me to be successful.
项目概要/摘要
DNA 经常受到外源性损伤,包括暴露于紫外线和环境中的有毒化学物质。
环境。为了修复这些物质造成的损伤并维持基因组稳定性,细胞具有多种
有效的DNA修复机制。然而,如果损坏负担过重,有些损坏将不可避免地无法修复
太高了。未修复的 DNA 损伤会阻碍 DNA 合成并对细胞产生严重后果
以及为了人类的健康。布朗等人的一项研究。使用叠氮胸苷(AZT)作为阻断大肠杆菌复制的工具。
大肠杆菌发现解决停滞复制叉的必需基因。 AZT 是一种胸苷类似物,可以
在合成过程中掺入并阻止引物延伸,导致复制停滞和单链
DNA缺口形成。两个基因 yoaA 和 holC 被发现对于解决 DNA 复制停滞问题至关重要
在 AZT 处理的大肠杆菌细胞中。 yoaA 基因编码 XPD/Rad3 样解旋酶。四个人类 XPD/Rad-
3 个类似的解旋酶(FANCJ、XPD、RTEL1 和 CHLR1)有助于基因组稳定性,如果受到损害,可以
导致各种遗传疾病并增加患癌症的风险。 holC 基因编码 chi,它是
两个不同复合体的一部分。 Chi 是 DNA 聚合酶 III 钳加载器的辅助亚基,并形成
与全酶的复合物。 Chi 还结合 YoaA 以创建功能性 YoaA-chi 解旋酶。众所周知,Chi
结合单链 DNA 结合蛋白 (SSB),这种相互作用对于解决停滞的损伤是必要的
复制。 SSB 是生命所有领域中发现的一种必需蛋白质,覆盖单链 (ss) DNA,并且
与十多种 DNA 修复和复制蛋白相互作用。 YoaA、chi 和 SSB 如何协同工作
解决导致复制停止的损坏尚不清楚。因此,本研究金旨在表征 SSB
通过生化技术与 YoaA-chi 相互作用,以了解这种新的修复途径。这是
假设 SSB 调节 YoaA-chi 解开双链 DNA 的能力,以解决损伤
复制叉基于初步数据,表明 YoaA-chi 的解旋酶活性在
单边带的存在。 SSB 如何结合 YoaA-chi 将被阐明,无论是通过 chi 上的已知位置还是通过
通过可能在 YoaA 上的新交互(目标 1)。因为 SSB 调节多种 DNA 结合蛋白
通过各种机制,SSB 可以调节的 YoaA-chi 的几个方面将得到研究。这将是
确定 SSB 是否改变 YoaA-chi 的底物亲和力(目标 2)或 YoaA-chi 的解旋酶活性(目标
3)。这将是第一个研究 SSB 如何调节 YoaA-chi 以及这些蛋白质在
新颖的DNA修复机制。这项研究也将为我的培训做出重大贡献,使我成为
一名独立的生物化学家和佛罗里达大学的环境将使我取得成功。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Savannah Weeks Pollenz其他文献
Savannah Weeks Pollenz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Savannah Weeks Pollenz', 18)}}的其他基金
How SSB Regulates YoaA-chi's Function in DNA Damage Repair
SSB 如何调节 YoaA-chi 的 DNA 损伤修复功能
- 批准号:
10536876 - 财政年份:2022
- 资助金额:
$ 4.43万 - 项目类别:
相似海外基金
Inhibition or evasion of P-glycoprotein-mediated drug transport
抑制或逃避 P-糖蛋白介导的药物转运
- 批准号:
10568723 - 财政年份:2023
- 资助金额:
$ 4.43万 - 项目类别:
Mechanism of Substrate Unfolding by the AAA+ ATPase p97 and Binding Partners
AAA ATPase p97 和结合伙伴的底物解折叠机制
- 批准号:
10678124 - 财政年份:2023
- 资助金额:
$ 4.43万 - 项目类别:
Mechanistic Investigation of Proteostasis at the Outer Mitochondrial Membrane
线粒体外膜蛋白质稳态的机制研究
- 批准号:
10684120 - 财政年份:2023
- 资助金额:
$ 4.43万 - 项目类别:
Loss of VCP Function in Frontotemporal Lobar Degeneration
额颞叶变性导致 VCP 功能丧失
- 批准号:
10440933 - 财政年份:2022
- 资助金额:
$ 4.43万 - 项目类别:
Molecular Mechanisms of The Human Mitochondrial ABC Transporter ABCB10
人类线粒体 ABC 转运蛋白 ABCB10 的分子机制
- 批准号:
10596638 - 财政年份:2022
- 资助金额:
$ 4.43万 - 项目类别: