Evolutionary dynamics of dense, spatially structured, and antagonistic microbial populations
密集、空间结构和对抗性微生物种群的进化动力学
基本信息
- 批准号:10684081
- 负责人:
- 金额:$ 38.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-15 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:AffectAgarAntibiosisBiologicalCaenorhabditis elegansCell CommunicationCell ShapeCellsChemicalsCommunitiesDependenceEngineeringEnvironmentEventEvolutionFeedbackGene FrequencyGenetic DriftGenotypeHealthHumanHuman MicrobiomeInfectionInfection preventionInvadedLaboratoriesLiquid substanceMechanicsMediatingMicrobeMutationNatural SelectionsNematodaPenetrationPopulationReplacement TherapyResistanceRodShapesSkinStructureSurfaceToxinTranslatingWorkYeastsantagonistdesignexperimental studyfitnesshost microbiomeinterestmathematical modelmicrobialmicrobial communitymicrobiomemicroorganism interactionpathogenpressuresoft tissuesynthetic biology
项目摘要
Abstract
Microbes in host microbiomes, human infections and the natural environment often live in spatially
structured aggregates and interact antagonistically with each other. Toxin-mediated antagonistic
interactions are widespread in the gut, skin, and other human microbiomes, and protect these
communities against external invasion. Recent results suggest that spatial structure can strongly
affect the evolutionary dynamics of microbial populations, and, in turn, microbial interactions can
feedback on the formation of spatial structure. For example, we found that mechanical interactions
among dividing cells in growing yeast colonies reduce the power of natural selection by reducing
the rates at which lower fitness strains go extinct and fitter ones expand in these populations.
Despite spatial structure and microbial interactions have a strong impact on the evolutionary
dynamics of microbes relevant for human health, most of what we know about microbial
evolutionary dynamics comes from experiments with well-mixed liquid cultures with limited
interactions among cells. To fill this gap, my group is interested in understanding quantitatively
how spatial structure, mechanics and biological interactions impact the adaptive evolutionary
dynamics of microbial populations. We approach this question via experimental evolution,
synthetic biology, and mathematical modeling. In preliminary experiments, we found that evolving
yeast colonies selecting for faster expansion on agar surfaces results in notable changes in cell
shape: cells evolved from an ellipsoidally shaped ancestor to being elongated and almost rod-
like, changing the way cells interact mechanically when growing and dividing. We hypothesize
that an elongated cell shape is advantageous for faster expansion because it reduces cell
packing, and that this adaptive change is associated with changes in the way genotypes cluster
in space leading to increased genetic drift, the temporal change in allele frequencies due to
chance events. Recently, we showed that a toxin-producing microbe can only invade a landscape
occupied by a weaker toxin-producer if its inoculum is larger than a critical size, and that adaptive
evolution can alter the dynamics of antagonism. We will experimentally investigate the
dependence of the critical inoculum size on the strength of the interaction, and we will study how
spatial structure controls the fate of mutations that confer resistance to the toxin produced by
either the invader or resident strain. Finally, we will investigate how antagonistic interactions
among microbes affect the dynamics of invasion in the gut of the nematode Caenorhabditis
elegans: these experiments will help us translate results obtained in simple laboratory settings to
the more complicated but more realistic dynamics of invasion of a host microbiome.
抽象的
宿主微生物组、人类感染和自然环境中的微生物通常生活在空间中
结构化聚集体并相互拮抗地相互作用。毒素介导的拮抗剂
相互作用在肠道、皮肤和其他人类微生物组中广泛存在,并保护这些微生物
社区抵御外来入侵。最近的结果表明,空间结构可以强烈地
影响微生物种群的进化动态,反过来,微生物相互作用可以
空间结构形成的反馈。例如,我们发现机械相互作用
正在生长的酵母菌落中的分裂细胞之间通过减少
在这些人群中,适应性较差的品种灭绝的速度和适应性强的品种扩张的速度。
尽管空间结构和微生物相互作用对进化有很大影响
与人类健康相关的微生物动态,我们对微生物的大部分了解
进化动力学来自于充分混合的液体培养物的实验,其有限的
细胞之间的相互作用。为了填补这一空白,我的小组有兴趣定量地理解
空间结构、力学和生物相互作用如何影响适应性进化
微生物种群的动态。我们通过实验进化来解决这个问题,
合成生物学和数学建模。在初步实验中,我们发现进化
酵母菌落选择在琼脂表面上快速扩张会导致细胞发生显着变化
形状:细胞从椭圆形祖先进化为细长且几乎呈杆状
比如,改变细胞生长和分裂时机械相互作用的方式。我们假设
细长的细胞形状有利于更快的扩张,因为它减少了细胞
包装,并且这种适应性变化与基因型聚类方式的变化相关
在空间中导致遗传漂变增加,等位基因频率的时间变化是由于
偶然事件。最近,我们证明产生毒素的微生物只能侵入景观
如果接种量大于临界尺寸,则被较弱的毒素产生者占据,并且适应性
进化可以改变对抗的动态。我们将通过实验研究
临界接种量对相互作用强度的依赖性,我们将研究如何
空间结构控制着突变的命运,这些突变赋予了对由
入侵者或常驻菌株。最后,我们将研究拮抗相互作用如何
微生物之间影响线虫肠道入侵动态
线虫:这些实验将帮助我们将在简单实验室环境中获得的结果转化为
宿主微生物组入侵的更复杂但更现实的动态。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrea Giometto其他文献
Andrea Giometto的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
过氧化氢选择性催化琼脂脱硫反应机制研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
基于体外模拟评价的琼脂和卡拉胶调控肠道稳态机制研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
琼脂基Pickering乳液稳定剂的理性设计及稳定机理研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Cd(II)在NH2-Agar/PSS双网络水凝胶上的吸附行为及资源化工艺研究
- 批准号:51708204
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
琼脂糖薄膜的化学改性及湿气驱动的能量转化机理研究
- 批准号:51603068
- 批准年份:2016
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Emergent Behavior in a Dish: Discovery of Bi-directional Spiraling as a Population Phenomenon in C. elegans Enables In-Depth Dissection of Mechanisms Underlying Group Behaviors
培养皿中的突现行为:发现秀丽隐杆线虫中的双向螺旋种群现象,有助于深入剖析群体行为背后的机制
- 批准号:
10724212 - 财政年份:2023
- 资助金额:
$ 38.15万 - 项目类别:
Multiplexed in vivo assembly of long and complex DNA
长且复杂的 DNA 的多重体内组装
- 批准号:
10760876 - 财政年份:2023
- 资助金额:
$ 38.15万 - 项目类别:
Thiazolino-Pyridone Compounds as Novel Drugs for Tuberculosis
噻唑啉-吡啶酮化合物作为结核病新药
- 批准号:
10698829 - 财政年份:2023
- 资助金额:
$ 38.15万 - 项目类别:
Steerable Laser Interstitial Thermotherapy (SLIT) Robot for Brain Tumor Therapy
用于脑肿瘤治疗的可操纵激光间质热疗 (SLIT) 机器人
- 批准号:
10572533 - 财政年份:2023
- 资助金额:
$ 38.15万 - 项目类别:
Programming designer DNA nanostructures for blocking enveloped viral infection
编程设计 DNA 纳米结构以阻止包膜病毒感染
- 批准号:
10598739 - 财政年份:2023
- 资助金额:
$ 38.15万 - 项目类别: