Noncontact Remote Monitoring for the Detection of Opioid-Induced Respiratory Depression
非接触式远程监测检测阿片类药物引起的呼吸抑制
基本信息
- 批准号:10684530
- 负责人:
- 金额:$ 32.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-15 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The US opioid crisis continues to have a catastrophic impact on human lives and the ongoing COVID-19
pandemic is compounding its effects. Based on the statistics published by the CDC, 91,799 drug overdose
deaths occurred in the US in 2020, where the age-adjusted overdose deaths increased by 31% from 2019 to
2020. In addition, opioids, which cause respiratory depression, were involved in 75% of all drug overdose
deaths in the US. We propose to build on our work in non-invasive monitoring of vital signs to develop an FDA-
regulated medical device with a primary application in monitoring patients for opioid-induced respiratory
depression. This includes at-home monitoring of patients with chronic pain being treated with high-dose opioid
prescription medications or patients suffering from opioid use disorder (OUD) as well as monitoring subjects
with OUD at supervised injection sites (also known as supervised consumption spaces). Our overall goal is to
develop a non-contact multi-modal monitoring system for the detection of opioid-induced respiratory
depression at home and in supervised injection sites. While radar is capable of penetrating through clothing
and blankets to measure chest wall movements resulting from respiration, it requires the guidance of depth
imaging to target a person and the chest area. Our specific aims are: 1. Estimate tidal volume using a
noncontact monitoring system. Our current technology is capable of detecting respiratory rate with a high
degree of accuracy for stationary subjects. However, robust detection of respiratory depression involves
monitoring of respiratory rate, pattern, and depth (i.e., tidal volume). As part of this specific aim, we will develop
a framework to estimate tidal volume of a stationary subject using radar and depth information, where we
estimate tidal volume from chest wall displacements. Furthermore, we will extract features to characterize
respiratory pattern from the acquired radar signal. As a primary validation of this estimation framework, our
system will be tested on 20 healthy volunteers. The outcome of the test will provide us with preliminary data
regarding the accuracy of the radar and the depth-based tidal volume estimation as compared with the gold
standard. 2. Develop and validate a framework for integrating data from sensors to detect respiratory
depression. In this specific aim, we will develop a framework to use the respiratory rate, respiratory pattern,
and tidal volume information from the radar and depth camera to determine if respiratory depression has
occurred. This involves a two-step approach, where we extract respiratory features to characterize respiratory
patterns to complement respiratory rate and tidal volume, and then use a machine learning model to detect the
occurrence of respiratory depression. To help with design the right model, we will collect data using our radar
and depth imaging system from anesthetized pigs going through opioid-induced respiratory depression.
美国阿片类药物危机继续对人类的生活产生灾难性的影响,而持续的covid-19
大流行正在加剧其影响。根据CDC发布的统计数据,药物过量91,799
死亡发生在2020年美国发生,从2019年开始,年龄习惯的过量死亡人数增加了31%
2020年。此外,阿片类药物引起呼吸抑郁症,涉及所有药物过量的75%
在美国死亡。我们建议在非侵入性监测生命体征的非侵入性监测中建立工作,以开发FDA-
受监管的医疗装置,主要应用在监测患者的阿片类药物诱导的呼吸道
沮丧。这包括对高剂量阿片类药物治疗慢性疼痛患者的家庭监测
处方药或患有阿片类药物使用障碍(OUD)的患者以及监测受试者
在监督注射地点(也称为有监督的消费空间)。我们的总体目标是
开发一个非接触式多模式监测系统,用于检测阿片类药物诱导的呼吸系统
在家和监督注射部位的抑郁症。雷达能够穿透衣服
和毯子测量呼吸引起的胸壁移动,需要深度指导
成像以针对一个人和胸部区域。我们的具体目的是:1。使用
非接触监测系统。我们当前的技术能够检测高的呼吸率
固定受试者的准确度。但是,强大的呼吸抑郁症检测涉及
监测呼吸频率,模式和深度(即潮汐体积)。作为这个特定目标的一部分,我们将发展
使用雷达和深度信息估算固定主体的潮汐量的框架,我们
估算胸壁位移的潮汐体积。此外,我们将提取特征以表征
获得的雷达信号的呼吸模式。作为对此估计框架的主要验证,我们的
系统将对20位健康志愿者进行测试。测试的结果将为我们提供初步数据
关于雷达的准确性和基于深度的潮汐体积估计
标准。 2。开发和验证一个框架,用于集成传感器的数据以检测呼吸系统
沮丧。在这个具体目标中,我们将开发一个框架来使用呼吸速度,呼吸模式,
以及来自雷达和深度摄像机的潮汐量信息,以确定呼吸抑郁是否具有
发生。这涉及两步方法,我们提取呼吸特征以表征呼吸系统
补充呼吸率和潮汐量的模式,然后使用机器学习模型来检测
呼吸抑郁症的发生。为了帮助设计正确的模型,我们将使用雷达收集数据
以及通过阿片类药物诱导的呼吸抑制的麻醉猪的深度成像系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
Behnood Gholami的其他基金
Using Machine Learning and Blockchain Technology to Reduce Drug Diversion in Hospitals
使用机器学习和区块链技术减少医院的药物转移
- 批准号:1076113010761130
- 财政年份:2020
- 资助金额:$ 32.5万$ 32.5万
- 项目类别:
A Clinical Surveillance Software Platform for Early Identification of Severe Asynchrony in Mechanically Ventilated Patients in the Intensive Care Unit
用于早期识别重症监护病房机械通气患者严重不同步的临床监测软件平台
- 批准号:1007967610079676
- 财政年份:2020
- 资助金额:$ 32.5万$ 32.5万
- 项目类别:
相似海外基金
Mitochondria and anesthetic-induced developmental neurotoxicity
线粒体和麻醉诱导的发育神经毒性
- 批准号:1055196310551963
- 财政年份:2023
- 资助金额:$ 32.5万$ 32.5万
- 项目类别:
Koli: A non-surgical solution for gallstone disease
Koli:胆结石疾病的非手术解决方案
- 批准号:1069894910698949
- 财政年份:2023
- 资助金额:$ 32.5万$ 32.5万
- 项目类别:
Non-invasive oscillometry to measure lung mechanics, response to treatments, and predict longer-term pulmonary outcomes among preterm infants: a prospective cohort study
无创示波法测量早产儿的肺力学、治疗反应并预测长期肺部结局:一项前瞻性队列研究
- 批准号:1055435510554355
- 财政年份:2022
- 资助金额:$ 32.5万$ 32.5万
- 项目类别:
Testing a Multi-behavioral Intervention to Improve Oral Health Behaviors in the Pediatric Dental Surgery Population
测试多种行为干预措施以改善儿童牙科手术人群的口腔健康行为
- 批准号:1070739910707399
- 财政年份:2022
- 资助金额:$ 32.5万$ 32.5万
- 项目类别:
Non-invasive oscillometry to measure lung mechanics, response to treatments, and predict longer-term pulmonary outcomes among preterm infants: a prospective cohort study
无创示波法测量早产儿的肺力学、治疗反应并预测长期肺部结局:一项前瞻性队列研究
- 批准号:1037015610370156
- 财政年份:2022
- 资助金额:$ 32.5万$ 32.5万
- 项目类别: