Integrating Clinical, Pathologic, and Immune Features to Predict Breast Cancer Recurrence and Chemotherapy Benefit
整合临床、病理和免疫特征来预测乳腺癌复发和化疗获益
基本信息
- 批准号:10723924
- 负责人:
- 金额:$ 20.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-07 至 2028-06-30
- 项目状态:未结题
- 来源:
- 关键词:American Cancer SocietyAntiestrogen TherapyArtificial IntelligenceBiological AssayBiological MarkersBiopsyCancer EtiologyCancer PrognosisCell DensityCellsCessation of lifeChicagoClinicalClinical DataClinical ResearchDataDatabasesDiagnosisDiseaseDisparityERBB2 geneGene ExpressionGene Expression ProfileGene Expression ProfilingGoalsGuidelinesHematoxylin and Eosin Staining MethodHistologyHormone ReceptorImageImage AnalysisImmuneImmunofluorescence ImmunologicImmunological ModelsImmunologyInstitutionMalignant NeoplasmsModelingPathologicPathologistPathologyPatient CarePatient SelectionPatientsPerformancePositioning AttributePrognosisRecommendationRecurrenceRecurrent Malignant NeoplasmResearch PersonnelResource-limited settingRetrospective cohortRiskSamplingSelection for TreatmentsStainsTechniquesTest ResultTestingTimeTrainingTumor-Infiltrating LymphocytesUnited StatesUniversitiesValidationWomanWorkbiobankbiomarker validationbreast cancer diagnosiscancer diagnosiscancer preventioncancer recurrencecancer survivalcareerchemotherapyclinical implementationclinical practiceclinical predictorsclinically relevantcohortcombatcost effectivecost effective treatmentdata streamsdeep learningdeep learning modeldesigndigitaldigital pathologyexperiencegenomic biomarkerhealth care disparityhormone receptor-positivehormone therapyimplementation scienceimprovedindividualized medicinemalignant breast neoplasmmodel developmentmortalitynovelparticipant enrollmentpatient subsetspersonalized medicinepredictive markerprognosticprognostic modelquantitative imagingreceptor expressiontreatment response
项目摘要
Abstract
Breast cancer is the leading cause of cancer death for women globally, with over 2.3 million cases
diagnosed each year. Most cases are hormone receptor positive and effectively treated with anti-estrogen
therapy, but some patients have aggressive disease and are at risk for recurrence and death without
chemotherapy. Gene expression based recurrence assays, such as OncotypeDX, were designed to predict
recurrence on hormonal therapy and are used to select patients for chemotherapy. However, these assays are
expensive (> $3,000 per test), take considerable time to perform leading to treatment delays, and testing is
underutilized or frankly unavailable in low resource settings in the US and globally. Conversely, every patient
with breast cancer has a biopsy to confirm the diagnosis, which is routinely analyzed by pathologist to determine
subtype of breast cancer and grade. Deep learning is an emerging technique for quantitative image analysis,
and can identify non-intuitive features from pathology, including gene expression patterns. In preliminary work, I
have demonstrated that deep learning on pathology samples can provide rapid and cost-effective prediction of
OncotypeDX score using readily available data, and can identify patients at low risk of recurrence on hormonal
therapy.
However, OncotypeDX remains an imperfect predictor of chemotherapy benefit, as it was developed to
predict recurrence on hormonal therapy. By refining my deep learning biomarker to incorporate clinical and
immune features of breast cancer, I can improve accuracy in prediction of chemotherapy benefit and thus the
ability to personalize treatment. First, I will capitalize on the recent expansion of clinical data in the National
Cancer Data Base to develop a more accurate clinical models of prognosis and chemotherapy benefit. Next, I
will use multiplex immunofluorescence to better characterize spatial and cell density features associated with
chemotherapy benefit, and use deep learning models to infer these features from standard hematoxylin and
eosin stained digital pathology. Finally, I will integrate these clinical and immune models with my existing deep
learning pathologic model and validate the integrated model in a multi-institutional cohort. The result of this work
will result in a prognostic and predictive deep learning biomarker that makes accurate predictions from readily
available clinical, pathologic, and inferred immune features. This approach has the potential to reduce
chemotherapy delays due to rapid turnaround time, combat healthcare disparities through improved availability
of testing, and improve personalization of treatment by tailoring a biomarker for prediction of chemotherapy
benefit.
抽象的
乳腺癌是全球女性癌症死亡的主要原因,有超过 230 万病例
每年都会确诊。大多数病例为激素受体阳性,并可通过抗雌激素药物有效治疗
治疗,但有些患者患有侵袭性疾病,如果不进行治疗,就有复发和死亡的风险
化疗。基于基因表达的复发检测(例如 OncotypeDX)旨在预测
激素治疗复发并用于选择接受化疗的患者。然而,这些测定是
昂贵(每次测试 > 3,000 美元),需要相当长的时间才能进行,导致治疗延误,并且测试
在美国和全球资源匮乏的环境中,这些技术未得到充分利用或坦率地说不可用。相反,每个患者
患有乳腺癌的患者需要进行活检以确认诊断,并由病理学家进行常规分析以确定
乳腺癌的亚型和级别。深度学习是一种新兴的定量图像分析技术,
并且可以从病理学中识别非直观特征,包括基因表达模式。在前期工作中,我
已经证明,对病理样本的深度学习可以提供快速且经济高效的预测
OncotypeDX 评分使用现成的数据,可以识别激素复发风险较低的患者
治疗。
然而,OncotypeDX 仍然是化疗获益的不完美预测因子,因为它的开发目的是
预测激素治疗的复发。通过完善我的深度学习生物标志物,将临床和
乳腺癌的免疫特征,我可以提高化疗获益预测的准确性,从而提高
个性化治疗的能力。首先,我将利用国家最近扩大的临床数据
癌症数据库开发出更准确的预后和化疗益处的临床模型。接下来,我
将使用多重免疫荧光来更好地表征与相关的空间和细胞密度特征
化疗益处,并使用深度学习模型从标准苏木精和
伊红染色数字病理学。最后,我会将这些临床和免疫模型与我现有的深度结合起来
学习病理模型并在多机构队列中验证集成模型。这项工作的结果
将产生一种预后和预测性的深度学习生物标志物,可以轻松地做出准确的预测
可用的临床、病理和推断的免疫特征。这种方法有可能减少
由于周转时间过长而导致化疗延迟,通过提高可用性来消除医疗保健差异
测试,并通过定制用于预测化疗的生物标志物来提高治疗的个性化
益处。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Frederick Matthew Howard其他文献
Frederick Matthew Howard的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Frederick Matthew Howard', 18)}}的其他基金
Developing Digital Pathology Biomarkers for Response to Neoadjuvant and Adjuvant Chemotherapy in Breast Cancer
开发数字病理学生物标志物以应对乳腺癌新辅助和辅助化疗
- 批准号:
10315227 - 财政年份:2021
- 资助金额:
$ 20.11万 - 项目类别:
相似国自然基金
糖皮质激素内分泌治疗胰腺癌的机理及药物动力学/药效动力学研究
- 批准号:81673500
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
基于ERα和HER2的双靶点抑制剂TPDs逆转乳腺癌耐药作用及机制研究
- 批准号:81302800
- 批准年份:2013
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
染色体重塑蛋白MORC2在乳腺癌进展及抗雌激素治疗敏感性中的作用及其分子机制研究
- 批准号:81372847
- 批准年份:2013
- 资助金额:86.0 万元
- 项目类别:面上项目
抗雌激素治疗在晚期非小细胞肺癌EGFR-TKIs原继发耐药中的机理研究
- 批准号:81241070
- 批准年份:2012
- 资助金额:10.0 万元
- 项目类别:专项基金项目
乳腺癌抗雌激素治疗耐药的分子靶点
- 批准号:81230054
- 批准年份:2012
- 资助金额:270.0 万元
- 项目类别:重点项目
相似海外基金
Mechanisms by which histone methyltransferases regulate nuclear receptor activity and response to therapy in hormone-driven tumors.
组蛋白甲基转移酶调节核受体活性和激素驱动肿瘤治疗反应的机制。
- 批准号:
10563751 - 财政年份:2023
- 资助金额:
$ 20.11万 - 项目类别:
Neoadjuvant Neratinib in Stage I-III HER2-mutated Lobular Breast Cancer
新辅助来那替尼治疗 I-III 期 HER2 突变小叶乳腺癌
- 批准号:
10660734 - 财政年份:2023
- 资助金额:
$ 20.11万 - 项目类别:
MDC1: central regulator of estrogen receptor function and therapy response in lobular carcinoma
MDC1:小叶癌雌激素受体功能和治疗反应的中枢调节因子
- 批准号:
10361108 - 财政年份:2022
- 资助金额:
$ 20.11万 - 项目类别:
WNT pathway-driven anti-estrogen therapy resistance in breast cancer
WNT 通路驱动的乳腺癌抗雌激素治疗耐药
- 批准号:
10606977 - 财政年份:2022
- 资助金额:
$ 20.11万 - 项目类别:
Novel dietary interventions for reducing obesity-associated breast cancer
减少肥胖相关乳腺癌的新型饮食干预措施
- 批准号:
10367368 - 财政年份:2022
- 资助金额:
$ 20.11万 - 项目类别: