Identifying and evaluating prevention strategies for COVID-19 in correctional facilities
识别和评估惩教设施中的 COVID-19 预防策略
基本信息
- 批准号:10723881
- 负责人:
- 金额:$ 12.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-04 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:2019-nCoVActive LearningAdvisory CommitteesAffectAwardCOVID-19COVID-19 mortalityCOVID-19 preventionCOVID-19 riskCOVID-19 testCOVID-19 vaccinationCalibrationCommunicable DiseasesCommunitiesComplexConnecticutContractsCoupledDataDevelopmentDiseaseEffectivenessEpidemiologistEpidemiologyEvaluationFundingFutureGoalsGovernmentGrowthHazard ModelsHerd ImmunityHospitalizationHouseholdIndividualInfectionInfection ControlInterventionJailKnowledgeLeftMass ScreeningMeasurableMeasuresMentorsMethodologyMethodsModelingModificationNatureOutputPersonsPhasePoliciesPolicy MakerPopulationPredispositionPrevention MeasuresPrevention strategyPrisonsProtocols documentationPublic Health SchoolsResearchRespiratory Tract InfectionsRiskRisk ReductionRoleSARS-CoV-2 infectionSARS-CoV-2 transmissionScientistSocial DistanceSocial NetworkStructureTestingTimeTrainingTraining ProgramsUnited StatesVaccinatedVaccinationVaccineeVaccinesValidationVariantViralVulnerable Populationsadaptive interventionburden of illnesscareercombatcommunity burdencommunity-level factordiscrete timedisease transmissiondisorder controleffectiveness evaluationeffectiveness testingevidence baseexperiencefeasibility testingflexibilityhazardhealth disparityhigh riskimprovedinfection riskmarginalized populationmicrobial diseasemodel developmentmodels and simulationnovelprevent outbreaksprevention effectivenessprogramssimulationskillssymptomatic COVID-19transmission processtreatment effectunvaccinated
项目摘要
PROJECT SUMMARY
Respiratory infections, including SARS-CoV-2, disproportionately affect residents of correctional facilities (jails
and prisons). While the Federal Bureau of Prisons and state Departments of Correction (DOCs) implemented
numerous prevention strategies including social distancing protocols, vaccination campaigns, and testing
programs to mitigate transmission and reduce the disease burden, overarching guidance on COVID-19
prevention within correctional facilities is limited. As a result, DOCs must develop and modify their policies based
on existing evidence regarding the effectiveness of COVID-19 prevention strategies within correctional facilities.
Unfortunately, the existing evidence base is limited. Specifically, the effectiveness of prevention strategies has
principally been estimated in isolation (not in combination with other strategies) and while holding the variant
constant. Because of this, DOCs are left with little evidence on how to implement and adapt prevention strategies
in combination and under the ever-changing COVID-19 landscape. With the goal of expanding the evidence
base for infectious disease prevention strategies within correctional facilities, we will estimate the effects of
testing and vaccination on the burden of COVID-19 in both jails and prisons. To do so, we will develop an
individual level discrete time hazard (transmission) model of SARS-CoV-2 and test the feasibility and reliability
of a cutting-edge statistical causal inference approach as an alternative to transmission modeling (Aims 1 & 2).
To examine the effects of testing and vaccination in combination and to identify scenarios when strategies require
modification to contain spread and reduce disease burden, we will simulate waves of SARS-CoV-2 in the
community and identify the strategy combinations required to prevent outbreaks within facilities using our
transmission models (Aim 3). The proposed simulation approach will allow for the simulation of SARS-CoV-2
transmission and disease under known and future, theoretical scenarios. The execution of the proposed aims
will strengthen the evidence available to DOCs and other policymakers and could make possible the estimation
of indirect treatment effects under a causal framework within complex, nested social networks. In addition, their
execution, coupled with the proposed training program comprising coursework, structured mentoring, and
experiential learning, will allow Dr. Lind (the candidate) to enrich her knowledge of infectious disease
transmission modeling, causal inference methods for treatment effect estimation in the presence of interference,
and health disparities and infection control within a highly marginalized population, residents of correctional
facilities. The candidate has established an expert mentoring and advisory team led by Dr. Albert Ko at the
Epidemiology of Microbial Diseases Department at the Yale School of Public Health to enable this training, guide
Dr. Lind's transition to independence during the R00 award phase and support her growth as an independently
funded infectious disease epidemiologist.
项目概要
包括 SARS-CoV-2 在内的呼吸道感染对惩教设施(监狱)的居民造成不成比例的影响
和监狱)。虽然联邦监狱局和州惩教部 (DOC) 实施了
许多预防策略,包括社交距离协议、疫苗接种运动和检测
减轻传播和减轻疾病负担的计划,关于 COVID-19 的总体指导
惩教设施内的预防措施有限。因此,商务部必须根据
关于惩教设施内 COVID-19 预防策略有效性的现有证据。
不幸的是,现有的证据基础有限。具体来说,预防策略的有效性
主要是单独估计的(不与其他策略结合)并同时保留变量
持续的。因此,DOC 对于如何实施和调整预防策略几乎没有证据
在不断变化的 COVID-19 形势下。以扩大证据为目标
作为惩教设施内传染病预防策略的基础,我们将评估
在看守所和监狱中进行新冠肺炎 (COVID-19) 检测和疫苗接种。为此,我们将开发一个
SARS-CoV-2个体水平离散时间风险(传播)模型并测试可行性和可靠性
尖端统计因果推理方法作为传输建模的替代方案(目标 1 和 2)。
检查检测和疫苗接种相结合的效果,并确定策略需要时的情景
为了遏制传播并减轻疾病负担,我们将在
社区并使用我们的技术确定预防设施内疫情爆发所需的策略组合
传输模型(目标 3)。所提出的模拟方法将允许模拟 SARS-CoV-2
已知和未来的理论情景下的传播和疾病。拟议目标的执行
将加强向商务部和其他政策制定者提供的证据,并使估算成为可能
复杂、嵌套的社交网络中因果框架下的间接治疗效果。此外,他们的
执行,加上拟议的培训计划,包括课程作业、结构化指导和
体验式学习,将使林德博士(候选人)丰富她对传染病的知识
传输建模,存在干扰时估计治疗效果的因果推理方法,
高度边缘化人群、惩教机构居民的健康差异和感染控制
设施。候选人已在该院建立了由Albert Ko博士领导的专家指导和咨询团队
耶鲁大学公共卫生学院微生物疾病流行病学系负责开展本次培训、指南
Lind 博士在 R00 奖项阶段过渡到独立并支持她作为独立人士的成长
资助传染病流行病学家。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Evidence of leaky protection following COVID-19 vaccination and SARS-CoV-2 infection in an incarcerated population.
被监禁人群在接种 COVID-19 疫苗和感染 SARS-CoV-2 后存在保护漏洞的证据。
- DOI:
- 发表时间:2023-08-19
- 期刊:
- 影响因子:16.6
- 作者:Lind, Margaret L;Dorion, Murilo;Houde, Amy J;Lansing, Mary;Lapidus, Sarah;Thomas, Russell;Yildirim, Inci;Omer, Saad B;Schulz, Wade L;Andrews, Jason R;Hitchings, Matt D T;Kennedy, Byron S;Richeson, Robert P;Cummings, Derek A T;Ko, Albert I
- 通讯作者:Ko, Albert I
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Margaret Lind其他文献
Margaret Lind的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Margaret Lind', 18)}}的其他基金
Using Big Data to Understand Sepsis in an Immunocompromised Population
使用大数据了解免疫功能低下人群的脓毒症
- 批准号:
10064529 - 财政年份:2020
- 资助金额:
$ 12.68万 - 项目类别:
相似国自然基金
基于共识主动性学习的城市电动汽车充电、行驶行为与交通网—配电网协同控制策略研究
- 批准号:62363022
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于主动迁移学习的SAR图像场景目标联合识别方法研究
- 批准号:62301250
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向医学图像处理任务的主动学习新技术研究
- 批准号:82372097
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
量子点光学膜的原位动态高光谱监测与主动学习优化
- 批准号:22305015
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
基于主动统计迁移学习的电动汽车传动系统关键部件智能故障诊断研究
- 批准号:52305109
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Leveraging Automated Optimization of Inspired Oxygen and Oxidized Biomarker Lipidomics for Targeted Oxygenation during Mechanical Ventilation: a Pragmatic Clinical Trial
利用吸入氧和氧化生物标志物脂质组学的自动优化在机械通气期间进行靶向氧合:一项实用的临床试验
- 批准号:
10592000 - 财政年份:2023
- 资助金额:
$ 12.68万 - 项目类别:
Mentoring the next generation of trainees in patient-oriented, community engaged research in obesity and health equity
指导下一代学员进行以患者为中心、社区参与的肥胖和健康公平研究
- 批准号:
10662072 - 财政年份:2023
- 资助金额:
$ 12.68万 - 项目类别:
Microbial Dysbiosis in Pancreatic Cancer Initiation and Progression
胰腺癌发生和进展中的微生物失调
- 批准号:
10723251 - 财政年份:2023
- 资助金额:
$ 12.68万 - 项目类别: