Precision Apheresis: stem cell isolation from patients with sickle cell disease for gene therapy using high-throughput microfluidics
精密血浆分离术:使用高通量微流控技术从镰状细胞病患者中分离干细胞进行基因治疗
基本信息
- 批准号:10723247
- 负责人:
- 金额:$ 13.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-05 至 2028-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdvisory CommitteesAffectAmericanAnimal ModelAntibodiesAutologousBiomedical EngineeringBloodBlood CellsBlood Component RemovalBlood PlateletsBlood specimenBostonCD34 geneCancer DiagnosticsCannulationsCathetersCell SeparationCell TherapyCellsCharacteristicsCirculationClinicalCollectionCommittee MembersComputer ModelsDiseaseDoseEngineeringEngraftmentEpitopesFundingGenesGoalsHematocrit procedureHematologyHematopoiesisHematopoieticHematopoietic stem cellsHemoglobinopathiesHourHumanImmunodeficient MouseImmunotherapyIndividualInheritedInterphase CellKineticsLabelLeadLeukocytesMagnetismMentorsMethodsMicrofluidic MicrochipsMicrofluidicsModelingMolecularMusNaturePathologyPatientsPediatric HospitalsPeripheralPeripheral Blood Stem CellPersonsPlatelet aggregationProcessResearchResearch PersonnelResearch ProposalsResidual stateResource-limited settingSickle CellSickle Cell AnemiaSortingStem cell transplantSurfaceTechnologyTestingThrombophiliaTimeTrainingTranslatingTransplantationUnited StatesUnited States National Institutes of HealthWorkXenograft procedureblood productcostfeasibility testinggene therapyin vivoinstrumentmanufacturemicrofluidic technologymigrationmouse modelnanonanoparticleprogramsskillsstem cell biologystem cell gene therapystem cell technologystem cellssuccesstechnology developmenttherapeutic genetissue culture
项目摘要
PROJECT SUMMARY
Sickle Cell Disease (SCD) affects millions of people around the world. Recently, stem cell gene therapy has
emerged as a potentially curative option for SCD. Obtaining a sufficient dose of hematopoietic stem and
progenitor cells (HSPCs) from peripheral blood is paramount to the success of these gene therapies. However,
the higher numbers of RBCs in apheresis products can adversely impact the yield of valuable hematopoietic
stem cells during purification (~46% loss). There is, therefore, an immediate unmet need to develop an isolation
technology that can efficiently recover hematopoietic stem cells from apheresis products, irrespective of their
hematocrits. To address this challenge, I will develop a microfluidic HSPC isolation chip (HSPC-iChip) capable
of recovering >95% CD34+ cells from full apheresis products (~300 mL) in an hour (Aim 1). I will bring
advancements (in microfluidic technologies) from the field of cancer diagnostics to the field of
hematology to accomplish this. My central hypothesis is that the HSPC-iChip can isolate highly viable and
functional hematopoietic stem cells. To test this hypothesis, I will genetically edit the isolated stem cells and
analyze engraftment, disease correction, and human hematopoiesis in NBSGW mice (Aim 1). Additionally, under
the influence of centrifugal forces, the hypercoagulable state of sickle cell patients can lead to the formation of
cell clusters. These clusters have been observed to destabilize the cell collection interface, requiring highly
skilled apheresis operators for stem cell collection from sickle cell patients. Once the apheresis product is
collected, subsequent purification of ~1% HSPCs from the rest of the cells further necessitates specialized
instruments and consumables. This restricts a broader implementation of sickle cell gene therapy as most
patients reside in low-resource settings where skilled labor, bio-cleanrooms, and financial capabilities
are restricted. To address this challenge, in Aim 2, I will test the feasibility of a Precision Apheresis
technology that can directly separate HSPCs from peripheral circulation in a single step based on their
surface epitopes (CD34). The training objective of this project is to provide Dr. Mishra—who has a strong
background in microfluidics and cell sorting—with additional scientific training from leading pioneers in
therapeutic gene editing for hemoglobinopathies (Dr. Bauer, Boston Children's Hospital/Harvard), stem cell
apheresis and pathology (Dr. Manis, Boston Children's Hospital/Harvard), clinical hematology (Dr. Azar,
MGH/Harvard) high-throughput microfluidics (Dr. Toner, lead mentor, MGH/Harvard), animal models and
advanced tissue culture (Dr. Haber, co-mentor, MGH/Harvard), nanoparticle kinetics (Dr. Bhatia, MIT),
computational modeling of blood cells (Dr. Koumoutsakos, Harvard), and closed-loop mouse-chip models (Dr.
Manalis, MIT). This additional training will prepare Dr. Mishra to lead an independent transdisciplinary research
program in hematology, sickle cell disease, and bioengineering.
项目概要
最近,干细胞基因疗法影响了全世界数百万人。
获得足够剂量的造血干细胞成为 SCD 的潜在治疗选择。
来自外周血的祖细胞(HSPC)对于这些基因疗法的成功至关重要。
单采产品中红细胞数量较多可能会对宝贵造血的产量产生不利影响
纯化期间的干细胞(约 46% 损失),因此,迫切需要开发一种分离方法。
可以从单采产品中高效回收造血干细胞的技术,无论其性质如何
为了应对这一挑战,我将开发一种具有微流控 HSPC 隔离芯片 (HSPC-iChip) 功能。
一小时内从全单采产品(约 300 mL)中回收 >95% CD34+ 细胞(目标 1)。
从癌症诊断领域到微流体技术领域的进步
我的中心假设是 HSPC-iChip 可以分离出高度存活的和
为了检验这个假设,我将对分离的干细胞进行基因编辑,并
分析 NBSGW 小鼠的植入、疾病纠正和人类造血(目标 1)。
受离心力的影响,镰状细胞病患者的高凝状态可导致形成
已观察到这些细胞簇会破坏细胞收集界面的稳定性,需要高度的稳定性。
熟练的单采术操作员从镰状细胞患者采集干细胞。
收集后,随后从其余细胞中纯化约 1% 的 HSPC 进一步需要专门的
这限制了镰状细胞基因治疗的更广泛实施。
患者居住在资源匮乏的环境中,那里缺乏熟练劳动力、生物洁净室和经济能力
为了应对这一挑战,在目标 2 中,我将测试精密血浆分离术的可行性。
该技术可以根据 HSPC 的性质,一步直接将其从外周循环中分离出来。
该项目的培训目标是为Mishra博士提供强大的表面表位(CD34)。
微流体和细胞分选的背景——并接受来自领先先驱者的额外科学培训
血红蛋白病的治疗性基因编辑(鲍尔博士,波士顿儿童医院/哈佛大学),干细胞
血浆分离术和病理学(Manis 博士,波士顿儿童医院/哈佛大学),临床血液学(Azar 博士,
MGH/哈佛)高通量微流体(Toner 博士,首席导师,MGH/哈佛)、动物模型和
先进的组织培养(Haber 博士,麻省总医院/哈佛大学联合导师)、纳米粒子动力学(Bhatia 博士,麻省理工学院)、
血细胞计算模型(哈佛 Koumoutsakos 博士)和闭环小鼠芯片模型(Koumoutsakos 博士)
麻省理工学院马纳利斯)。这项额外培训将为米什拉博士领导一项独立的跨学科研究做好准备。
血液学、镰状细胞病和生物工程项目。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Avanish Mishra其他文献
Avanish Mishra的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Characterizing the genetic etiology of delayed puberty with integrative genomic techniques
利用综合基因组技术表征青春期延迟的遗传病因
- 批准号:
10663605 - 财政年份:2023
- 资助金额:
$ 13.39万 - 项目类别:
Pathogenic T cells in discoid lupus erythematosus
盘状红斑狼疮中的致病性 T 细胞
- 批准号:
10664134 - 财政年份:2023
- 资助金额:
$ 13.39万 - 项目类别:
Ion Mobility Spectrometry- quadrupole Time-of-Flight (IMS-qToF) Mass Spectrometer
离子淌度光谱仪 - 四极杆飞行时间 (IMS-qToF) 质谱仪
- 批准号:
10630627 - 财政年份:2023
- 资助金额:
$ 13.39万 - 项目类别:
Sex, Physiological State, and Genetic Background Dependent Molecular Characterization of CircuitsGoverning Parental Behavior
控制父母行为的回路的性别、生理状态和遗传背景依赖性分子特征
- 批准号:
10661884 - 财政年份:2023
- 资助金额:
$ 13.39万 - 项目类别:
Social Vulnerability, Sleep, and Early Hypertension Risk in Younger Adults
年轻人的社会脆弱性、睡眠和早期高血压风险
- 批准号:
10643145 - 财政年份:2023
- 资助金额:
$ 13.39万 - 项目类别: