Electrocardiogram-based deep learning and decision analysis to improve atrial fibrillation risk estimation
基于心电图的深度学习和决策分析改善房颤风险评估
基本信息
- 批准号:10722762
- 负责人:
- 金额:$ 19.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-15 至 2028-07-31
- 项目状态:未结题
- 来源:
- 关键词:Advisory CommitteesAffectAgeAlcoholsAnticoagulationArrhythmiaAtrial FibrillationBody Weight decreasedCalibrationCardiacCardiologyCardiomyopathiesCirculationClinicalClinical DataClinical ResearchClinical effectivenessComplexConflict (Psychology)CustomDataData ScienceData ScientistData SetDecision AnalysisDecision ModelingDevelopmentDiagnosisDiagnostic testsDiscriminationDiseaseEarly DiagnosisElectrocardiogramElectrophysiology (science)EuropeanExerciseFellowshipFutureGeneral HospitalsGoalsGuidelinesHealthHealthcareHeart failureImpaired cognitionIncidenceIndividualInterventionIntervention StudiesLeadLearningLearning SkillMachine LearningManuscriptsMass ScreeningMassachusettsMentored Patient-Oriented Research Career Development AwardMentorsMethodsModelingMonitorMorbidity - disease rateOralOutcomePatientsPeer ReviewPersonsPilot ProjectsPositioning AttributePreventive measurePrimary CareProgram DevelopmentPublic HealthPublishingResearch PersonnelResearch TrainingResidenciesRiskRisk EstimateRisk FactorsRisk ReductionSamplingScienceStrokeStroke preventionSurveysTestingTrainingUnited StatesWorkcardiovascular disorder riskcareercareer developmentclinical riskcomparative effectivenesscost effectivenessdeep learningdeep learning modeldesigndisorder riskexperiencehandheld mobile devicehealth care settingsheart rhythmimplementation scienceimprovedimproved outcomeinterestmachine learning modelmedical schoolsmodel buildingmodels and simulationmultidisciplinarynovelpopulation basedpredictive toolspreventive interventionprimary care patientprospectiverisk predictionrisk prediction modelscreeningsexsimulationskillstherapy designtooltrial comparingvirtual
项目摘要
Project Summary/Abstract
Atrial fibrillation (AF) is a major public health problem resulting in preventable strokes and increased incidence
of heart failure and early cognitive decline. AF is expected to affect nearly 12 million people in the United States
by 2030. Oral anticoagulation (OAC) is highly effective in reducing risk of AF-related stroke, and other preventive
interventions such as weight loss, exercise, and alcohol cessation may reduce risk of AF and associated
complications. However, AF is commonly asymptomatic and is frequently episodic, and therefore may be difficult
to diagnose. Although screening can detect undiagnosed AF, mass screening approaches have not resulted in
meaningful improvements in clinical outcomes. A major inefficiency inherent within current screening approaches
is the screening of many individuals at relatively low risk for AF, leading to an inefficient and low-yield screening
intervention. Therefore, there is a critical unmet need to identify individuals at elevated risk of developing AF
upfront, in order to optimize the efficiency of AF screening and preventive interventions. In Aim 1 of this proposal,
we will develop and compare novel deep learning-based methods to estimate AF risk in an automated fashion
using mobile single-lead electrocardiograms. In Aim 2, we will conduct an individual-level simulation to quantify
the comparative and cost-effectiveness of a risk-based approach to AF screening, as compared to the current
clinical standard of AF screening based on the simple age cutoff of ³65 years. In Aim 3, we will perform a pilot
study to quantify the user acceptability of prospective AF risk estimation and quantify associations between
estimated AF risk and true AF incidence at 18 months. The overall goal of this proposal is to establish the
feasibility and potential clinical value of automated AF risk estimation to guide preventive interventions designed
to reduce the morbidity resulting from AF and its associated complications. The aims will be executed in the
setting of a comprehensive career development program designed to provide Dr. Khurshid, an early career
investigator, with the skills and experience required to become an independent clinician investigator focused on
the improvement of outcomes in cardiac arrhythmias through the use of disease risk prediction. This proposal
impanels a multi-disciplinary team comprising experts in machine learning, decision science, and prospective
clinical studies, who will guide Dr. Khurshid in his transition to scientific independence.
项目概要/摘要
心房颤动 (AF) 是一个主要的公共卫生问题,导致可预防的中风和发病率增加
心力衰竭和早期认知能力下降预计将影响美国近 1200 万人。
到 2030 年。口服抗凝药 (OAC) 在降低 AF 相关中风风险以及其他预防措施方面非常有效
减肥、锻炼和戒酒等干预措施可能会降低房颤和相关疾病的风险
然而,房颤通常无症状且经常发作,因此可能很困难。
虽然筛查可以发现未确诊的房颤,但大规模筛查方法并没有带来结果。
当前筛查方法固有的严重低效问题。
对许多房颤风险相对较低的个体进行筛查,导致筛查效率低下
因此,识别患有房颤风险较高的个体是一个未得到满足的关键需求。
首先,为了优化房颤筛查和预防干预的效率,在本提案的目标 1 中,
我们将开发并比较基于深度学习的新颖方法,以自动方式估计 AF 风险
使用移动单导联心电图 在目标 2 中,我们将进行个体层面的模拟来量化。
与当前的 AF 筛查方法相比,基于风险的 AF 筛查方法的比较和成本效益
房颤筛查的临床标准基于 65 岁这一简单年龄界限。在目标 3 中,我们将进行试点。
研究量化用户对前瞻性 AF 风险评估的可接受性并量化之间的关联
估计的 AF 风险和 18 个月时的真实 AF 发生率 该提案的总体目标是确定
自动房颤风险评估指导预防性干预措施设计的可行性和潜在临床价值
减少 AF 及其相关并发症的发病率。这些目标将在 2017 年实现。
制定全面的职业发展计划,旨在为库希德博士提供早期职业生涯
研究者,具有成为独立临床研究者所需的技能和经验,专注于
通过使用疾病风险预测来改善心律失常的结果。
组建了一个由机器学习、决策科学和前瞻性专家组成的多学科团队
临床研究,他将指导库希德博士向科学独立的过渡。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Keeping to the rhythm of cardiovascular health.
保持心血管健康的节奏。
- DOI:
- 发表时间:2024-04-18
- 期刊:
- 影响因子:0
- 作者:Kany, Shinwan;Khurshid, Shaan
- 通讯作者:Khurshid, Shaan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shaan Khurshid其他文献
Shaan Khurshid的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
多氯联苯与机体交互作用对生物学年龄的影响及在衰老中的作用机制
- 批准号:82373667
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于年龄和空间的非随机混合对性传播感染影响的建模与研究
- 批准号:12301629
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
母传抗体水平和疫苗初种年龄对儿童麻疹特异性抗体动态变化的影响
- 批准号:82304205
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
运动状态下代谢率的年龄变化特征及对人体热舒适的影响研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
基于堆叠式集成学习探索人居环境对生物学年龄的影响
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Characterizing the genetic etiology of delayed puberty with integrative genomic techniques
利用综合基因组技术表征青春期延迟的遗传病因
- 批准号:
10663605 - 财政年份:2023
- 资助金额:
$ 19.62万 - 项目类别:
Ion Mobility Spectrometry- quadrupole Time-of-Flight (IMS-qToF) Mass Spectrometer
离子淌度光谱仪 - 四极杆飞行时间 (IMS-qToF) 质谱仪
- 批准号:
10630627 - 财政年份:2023
- 资助金额:
$ 19.62万 - 项目类别:
Social Vulnerability, Sleep, and Early Hypertension Risk in Younger Adults
年轻人的社会脆弱性、睡眠和早期高血压风险
- 批准号:
10643145 - 财政年份:2023
- 资助金额:
$ 19.62万 - 项目类别:
Age Differences and Mechanisms of Ketogenic Diet Induced Bone Loss
生酮饮食导致骨质流失的年龄差异和机制
- 批准号:
10740305 - 财政年份:2023
- 资助金额:
$ 19.62万 - 项目类别:
Characterizing the genetic etiology of delayed puberty with integrative genomic techniques
利用综合基因组技术表征青春期延迟的遗传病因
- 批准号:
10663605 - 财政年份:2023
- 资助金额:
$ 19.62万 - 项目类别: