Investigating the molecular mechanisms of membrane remodeling by coronaviruses
研究冠状病毒膜重塑的分子机制
基本信息
- 批准号:10724399
- 负责人:
- 金额:$ 20.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-16 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:2019-nCoVAmino AcidsAntiviral AgentsAppearanceBindingBiochemicalBiological AssayCell membraneCellsCessation of lifeComplexConfocal MicroscopyCoronavirusCoronavirus InfectionsCryo-electron tomographyCryoelectron MicroscopyDetergentsDevelopmentDrug TargetingEndoplasmic ReticulumFluorescence SpectroscopyFreezingFutureGenetic TranscriptionHealthcare SystemsHumanIn VitroInfectionIntegral Membrane ProteinInvestigationLengthLiposomesMembraneMembrane Structure and FunctionMiddle East Respiratory Syndrome CoronavirusMolecularNonstructural ProteinPopulationPositioning AttributeProcessProductionProtein RegionProteinsRNA TransportRNA VirusesResolutionRespiratory Tract InfectionsRoleSARS coronavirusShapesShelter facilitySiteSocial DistanceStructureSurfaceTestingTransmembrane DomainVaccinesVesicleViral Nonstructural ProteinsVirusVirus ReplicationWorkexperimental studyfightinghuman pathogeninsightmembrane modelmembrane reconstitutionmortalitynovelnovel coronaviruspandemic diseaseparticleprotein purificationprotein structurereconstitutionscreeningsuccesstooltransmission processunilamellar vesicleviral RNA
项目摘要
Coronaviruses are enveloped positive-sense RNA viruses. Over the last two decades, coronaviruses have led to severe respiratory infections in humans. Most recently, SARS-CoV-2 led to a global pandemic and resulted in more than 6.5 million deaths globally since December 2019. We currently lack a sufficiently broad set of antiviral drugs targeting different aspects of coronavirus replication. Therefore, developing new antiviral drugs targeting currently untargeted aspects of coronavirus replication may help reduce the mortality of future coronavirus infections. As such, it is critical to understand the molecular mechanisms of many different aspects of coronavirus replication as this will help to determine which aspects of viral replication may be useful targets for the development of new antiviral drugs. One aspect of coronavirus replication that is not well understood is the mechanisms by which coronaviruses remodel host cell membranes. Once coronaviruses infect host cells, a set of nonstructural proteins (nsps) are produced from the viral RNA. Three of these nsps, nsp3, nsp4 and nsp6, are integral membrane proteins that remodel host cell membranes to generate double-membrane vesicles (DMVs) from the endoplasmic reticulum (ER). These DMVs serve as the assembly sites for the replication and transcription complexes that are critical to producing viral RNA. In addition, DMVs have been shown to contain viral RNA further highlighting the critical role of DMVs in viral RNA production. While it is clear that membrane remodeling by coronaviruses is essential for their replication, we currently lack an understanding of the molecular mechanisms by which coronaviruses remodel host cell membranes to generate DMVs. One major reason for our limited understanding of this process, is that no studies have investigated the structure and function of the membrane-spanning regions of nsp3, nsp4 and nsp6 using purified proteins. As such, we will purify nsp3, nsp4 and nsp6 for structural studies using cryo-EM and for biochemical investigations using model membranes including liposomes and giant unilamellar vesicles. Importantly, this will work will not only provide new insight into the mechanisms of coronavirus replication, but it will also help reveal if membrane remodeling by coronaviruses may be a useful target for the development of future antiviral drugs.
冠状病毒是有包膜的正义RNA病毒。在过去的二十年中,冠状病毒导致人类严重呼吸道感染。最近,SARS-CoV-2 导致全球大流行,自 2019 年 12 月以来导致全球超过 650 万人死亡。目前,我们缺乏针对冠状病毒复制不同方面的足够广泛的抗病毒药物。因此,针对当前冠状病毒复制的非目标方面开发新的抗病毒药物可能有助于降低未来冠状病毒感染的死亡率。因此,了解冠状病毒复制许多不同方面的分子机制至关重要,因为这将有助于确定病毒复制的哪些方面可能是开发新抗病毒药物的有用靶标。冠状病毒复制的一个尚不清楚的方面是冠状病毒重塑宿主细胞膜的机制。一旦冠状病毒感染宿主细胞,病毒 RNA 就会产生一组非结构蛋白 (nsps)。其中三个 nsp(nsp3、nsp4 和 nsp6)是整合膜蛋白,可重塑宿主细胞膜以从内质网 (ER) 生成双膜囊泡 (DMV)。这些 DMV 作为复制和转录复合物的组装位点,对于产生病毒 RNA 至关重要。此外,DMV 已被证明含有病毒 RNA,进一步凸显了 DMV 在病毒 RNA 生产中的关键作用。虽然很明显冠状病毒的膜重塑对其复制至关重要,但我们目前对冠状病毒重塑宿主细胞膜以产生 DMV 的分子机制缺乏了解。我们对这一过程了解有限的一个主要原因是,没有研究使用纯化的蛋白质研究 nsp3、nsp4 和 nsp6 跨膜区域的结构和功能。因此,我们将纯化 nsp3、nsp4 和 nsp6,以便使用冷冻电镜进行结构研究,并使用模型膜(包括脂质体和巨型单层囊泡)进行生化研究。重要的是,这项工作不仅将为冠状病毒复制机制提供新的见解,而且还将有助于揭示冠状病毒的膜重塑是否可能成为未来抗病毒药物开发的有用目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Joseph Ragusa其他文献
Michael Joseph Ragusa的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Joseph Ragusa', 18)}}的其他基金
Dissecting the Molecular Mechanisms of Selective Autophagy
剖析选择性自噬的分子机制
- 批准号:
10478044 - 财政年份:2018
- 资助金额:
$ 20.44万 - 项目类别:
Dissecting the Molecular Mechanisms of Selective Autophagy
剖析选择性自噬的分子机制
- 批准号:
10691749 - 财政年份:2018
- 资助金额:
$ 20.44万 - 项目类别:
Dissecting the Molecular Mechanisms of Selective Autophagy
剖析选择性自噬的分子机制
- 批准号:
10472248 - 财政年份:2018
- 资助金额:
$ 20.44万 - 项目类别:
Dissecting the Molecular Mechanisms of Selective Autophagy
剖析选择性自噬的分子机制
- 批准号:
10004516 - 财政年份:2018
- 资助金额:
$ 20.44万 - 项目类别:
Dissecting the Molecular Mechanisms of Selective Autophagy
剖析选择性自噬的分子机制
- 批准号:
10246865 - 财政年份:2018
- 资助金额:
$ 20.44万 - 项目类别:
Identifying Mitophagy Receptors as Targets in Ras-dysregulated Cells
鉴定线粒体自噬受体作为 Ras 失调细胞的靶标
- 批准号:
10215731 - 财政年份:2016
- 资助金额:
$ 20.44万 - 项目类别:
相似国自然基金
基于D-氨基酸改性拉曼探针的细菌耐药性快速检测
- 批准号:22304126
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
化瘀通络法通过SATB1/JUNB介导“氨基酸代谢网-小胶质细胞极化”调控脑缺血神经功能恢复的机制研究
- 批准号:82374172
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
磷酸酶SHP2调控成纤维细胞支链氨基酸代谢在炎症性肠病相关肠纤维化中的作用机制研究
- 批准号:82300637
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
氨基酸感应器GCN2调控Beclin-1介导的自噬缓解自身免疫性甲状腺炎的作用研究
- 批准号:82370792
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
催化不对称自由基反应合成手性α-氨基酸衍生物
- 批准号:22371216
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Development of MS2045 for inhibition of Zika methyltransferase
开发用于抑制寨卡病毒甲基转移酶的 MS2045
- 批准号:
10645958 - 财政年份:2023
- 资助金额:
$ 20.44万 - 项目类别:
Elucidating the mechanisms of alphavirus subgenomic RNA translation
阐明甲病毒亚基因组 RNA 翻译机制
- 批准号:
10678281 - 财政年份:2023
- 资助金额:
$ 20.44万 - 项目类别:
Exploring the dynamics of nsp1 and RNA interaction in SARS-CoV with undergraduate researchers
与本科生研究人员一起探索 SARS-CoV 中 nsp1 和 RNA 相互作用的动态
- 批准号:
10730676 - 财政年份:2023
- 资助金额:
$ 20.44万 - 项目类别:
Structure-guided design of protease-resistant, lipopeptide inhibitors of SARS-CoV-2
SARS-CoV-2 蛋白酶抗性脂肽抑制剂的结构指导设计
- 批准号:
10679139 - 财政年份:2023
- 资助金额:
$ 20.44万 - 项目类别: