Monodisperse Microbubbles for Noninvasive Pressure Estimation
用于无创压力估计的单分散微泡
基本信息
- 批准号:10676271
- 负责人:
- 金额:$ 58.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-05 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:AcousticsBlood VesselsCardiacCathetersClinicalClinical TrialsComputer softwareContrast MediaCost MeasuresCustomDataData CollectionDevicesDiagnosisDiseaseEquationEstimation TechniquesExhibitsFrequenciesGasesGoalsHeartHydrostatic PressureIn VitroIntracranial PressureLipidsLiquid substanceMeasurementMeasuresMicrobubblesMicrofluidicsModelingMonitorNatureNeedlesParameter EstimationPatientsPharmacological TreatmentPopulationPortal HypertensionPortal PressurePortal vein structurePre-Clinical ModelPropertyReference StandardsResearchRheologyRiskSignal TransductionSurfaceTechniquesTestingTheoretical modelTranslatingVariantWaterWorkclinical careclinical translationcostfabricationimprovedin vitro testingin vivo Modelindividual responseinterfacialinterstitialintravenous injectionmeterpressureresponsesuccesstransmission processtreatment responsetumorultrasound
项目摘要
Project Summary
The current clinical standard for quantifying fluid pressures relies on the invasive placement of pressure
catheters or needles. These measures are costly and not without risk, thereby reducing how often data is
collected. Ultrasound contrast agents (UCA) are gas-filled microbubbles that, when insontated at a
fundamental frequency (f0), act as nonlinear oscillators, generating signal components ranging from the
subharmonic (f0/2) through higher harmonics. The subharmonic amplitude of UCA exhibits a linear relationship
with hydrostatic pressure, leading to the technique of subharmonic-aided pressure estimation (SHAPE).
SHAPE optimizations to date have relied primarily on empirical evidence to identify optimal acoustic
parameters and select a commercially available UCA. Currently, SHAPE provides up to 14 dB reduction in the
subharmonic amplitude over a pressure increase of 180 mmHg (0.6 dB/kPa). Clinical trials using SHAPE for
the diagnosis of portal pressures, cardiac pressures, and interstitial tumoral pressures during therapy have all
shown success. However, large variations in SHAPE have been observed at lower fluid pressures, indicating a
need to improve the technique's overall sensitivity. Using a variation of the Rayleigh–Plesset equation, our
group and others have modeled the SHAPE response of individual commercial bubbles and identified potential
sensitivities > 2 dB/kPa using optimized acoustic parameters. Thus, the potential exists to more than triple the
current sensitivity of SHAPE, thereby greatly reducing the overall errors associated with lower pressure
measurements.
Monodisperse microbubbles can be created using either buoyancy separation of existing UCAs or microfluidic
techniques. We hypothesize these agents will allow us to better refine previous modeling efforts, while also
greatly improving the overall sensitivity of SHAPE by tailoring the UCA to its application. To support this
hypothesis, we recently showed that monodisperse UCA nearly doubled the sensitivity of SHAPE (even
without full acoustic optimization). This proposal will be a first step towards the long-term goal of translating
SHAPE-specific UCA into clinical trials for improving the overall sensitivity of SHAPE as a noninvasive
pressure estimation technique. As part of this application, we propose to test the in vitro sensitivity of SHAPE
using monodisperse UCA using two fabrication approaches, to refine and validate our prior models of SHAPE
with empirical evidence from monodisperse UCA, and finally, to determine the ability of a customized,
monodisperse UCA to improve the sensitivity of SHAPE in in vivo models of cardiac pressures and portal
hypertension. At the conclusion of this project, we will have developed and validated a SHAPE-specific UCA,
capable of improving the sensitivity of SHAPE. These findings are expected to reduce the variability of SHAPE
as a noninvasive clinical measure of fluid pressures, enabling safer and more available clinical care.
项目概要
当前量化流体压力的临床标准依赖于压力的侵入性放置
这些措施成本高昂且存在风险,从而降低了数据获取的频率。
超声造影剂 (UCA) 是充满气体的微泡,当以声波照射时,会产生微泡。
基频(f0),充当非线性振荡器,生成范围从
次谐波 (f0/2) 到高次谐波 UCA 的次谐波幅度呈现线性关系。
与静水压力,导致了次谐波辅助压力估计(SHAPE)技术。
迄今为止,SHAPE 优化主要依赖于经验证据来确定最佳声学效果
参数并选择市售 UCA 目前,SHAPE 可将噪声降低高达 14 dB。
使用 SHAPE 进行的临床试验显示压力增加 180 mmHg (0.6 dB/kPa) 时的次谐波振幅。
治疗期间门脉压、心脏压和间质肿瘤压的诊断均具有
然而,在较低的流体压力下观察到形状的巨大变化,这表明
需要使用瑞利-普莱塞方程的变体来提高技术的整体灵敏度。
小组和其他人对单个商业泡沫的 SHAPE 响应进行了建模,并确定了潜在的
使用优化的声学参数,灵敏度 > 2 dB/kPa 因此,有可能提高三倍以上。
SHAPE 的电流灵敏度,从而大大减少与较低压力相关的总体误差
测量。
单分散微泡可以使用现有 UCA 的浮力分离或微流体来产生
我们追求的这些代理将使我们能够更好地完善以前的建模工作,同时也
通过根据其应用定制 UCA,大大提高了 SHAPE 的整体灵敏度。
假设,我们最近表明单分散 UCA 几乎使 SHAPE 的灵敏度提高了一倍(甚至
没有全面的声学优化)。该提案将是实现翻译长期目标的第一步。
SHAPE 特异性 UCA 进入临床试验,以提高 SHAPE 作为无创治疗的整体敏感性
作为该应用的一部分,我们建议测试 SHAPE 的体外灵敏度。
使用单分散 UCA 和两种制造方法来完善和验证我们之前的 SHAPE 模型
根据单分散 UCA 的经验证据,最后确定定制的能力,
单分散 UCA 可提高心脏压力和门脉体内模型中 SHAPE 的敏感性
在该项目结束时,我们将开发并验证 SHAPE 特异性 UCA,
能够提高 SHAPE 的敏感性,这些发现有望减少 SHAPE 的变异性。
作为流体压力的无创临床测量,可实现更安全、更可用的临床护理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Eisenbrey其他文献
John Eisenbrey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Eisenbrey', 18)}}的其他基金
Acoustic Droplet Initiated Radiosensitivity of Hepatocellular Carcinoma
声液滴引发肝细胞癌的放射敏感性
- 批准号:
10648110 - 财政年份:2023
- 资助金额:
$ 58.1万 - 项目类别:
Multi-modality detection of RCC Recurrence Post Ablation
消融后肾细胞癌复发的多模态检测
- 批准号:
10587731 - 财政年份:2022
- 资助金额:
$ 58.1万 - 项目类别:
Microbubble Cavitation for Improving Hepatocellular Carcinoma Radioembolization
微泡空化改善肝细胞癌放射栓塞
- 批准号:
9887751 - 财政年份:2019
- 资助金额:
$ 58.1万 - 项目类别:
Clinically Translatable Ultrasound-Sensitive Microbubble Approaches for Overcoming Tumor Hypoxia
克服肿瘤缺氧的临床可转化超声敏感微泡方法
- 批准号:
9893869 - 财政年份:2018
- 资助金额:
$ 58.1万 - 项目类别:
Oxygen Microbubbles for Overcoming Hypoxic Tumor Resistance to Radiotherapy
氧气微泡克服缺氧肿瘤对放射治疗的抵抗力
- 批准号:
8959408 - 财政年份:2015
- 资助金额:
$ 58.1万 - 项目类别:
相似国自然基金
适当冷暴露抑制心脏成纤维细胞Sfrp2甲基化修饰调控心肌梗死后血管新生的研究
- 批准号:82300280
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于线粒体能量代谢及微循环障碍的多参数MR诊断和预测心脏移植物血管病研究
- 批准号:82371903
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
心脏微血管内皮细胞来源的MYDGF调控CD248保护心梗后心肌的机制研究
- 批准号:82370294
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
超声促IL-2/CCL22纳米粒淋巴结靶向递送抑制心脏移植物血管病变的研究
- 批准号:82302229
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Cav1/Nrf2/Hmox1通路调节糖尿病心脏微血管内皮细胞铁死亡减轻心肌缺血再灌注损伤的机制研究
- 批准号:82300492
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
5T-IV: photoacoustic needle with beacon pulse for ultrasound guided vascular access with Tool-Tip Tracking and Tissue Typing
5T-IV:带有信标脉冲的光声针,用于通过工具提示跟踪和组织分型进行超声引导血管通路
- 批准号:
10677283 - 财政年份:2023
- 资助金额:
$ 58.1万 - 项目类别:
High Framerate Plane-Wave Variance of Acceleration and Vector Flow Imaging for the Characterization of Atherosclerotic Plaque Morphology and Assessment of Vascular Hemodynamics
高帧率平面波加速度方差和矢量流成像用于动脉粥样硬化斑块形态的表征和血管血流动力学的评估
- 批准号:
10461534 - 财政年份:2022
- 资助金额:
$ 58.1万 - 项目类别:
High Framerate Plane-Wave Variance of Acceleration and Vector Flow Imaging for the Characterization of Atherosclerotic Plaque Morphology and Assessment of Vascular Hemodynamics
高帧率平面波加速度方差和矢量流成像用于动脉粥样硬化斑块形态的表征和血管血流动力学的评估
- 批准号:
10700833 - 财政年份:2022
- 资助金额:
$ 58.1万 - 项目类别:
Effect of right-ventricular structural remodeling during pressure overload on the mechanical behavior of myofibers in excised human myocardium
压力超负荷时右心室结构重塑对离体心肌肌纤维机械行为的影响
- 批准号:
10543042 - 财政年份:2021
- 资助金额:
$ 58.1万 - 项目类别:
Quantitative cerebral blood vessel imaging biomarkers for AD and VCID
AD 和 VCID 的定量脑血管成像生物标志物
- 批准号:
10214060 - 财政年份:2021
- 资助金额:
$ 58.1万 - 项目类别: