Development of Novel Ovarian Cancer Biomarkers for Early Detection Algorithms
开发用于早期检测算法的新型卵巢癌生物标志物
基本信息
- 批准号:10670063
- 负责人:
- 金额:$ 72.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AlgorithmsAutoantibodiesBiological MarkersCA-125 AntigenClassificationClinical TrialsCombination Drug TherapyComplementComputer ModelsConsensusDataDetectionDevelopmentDiagnosisDiagnosticDiseaseEarly DiagnosisEpithelial ovarian cancerGoalsInterdisciplinary StudyInterventionLeadLow PrevalenceMalignant neoplasm of ovaryMeasurementMeasuresModalityModelingNurses&apos Health StudyPatient CarePatientsPerformancePopulationPostmenopausePredictive ValueProbabilityProspective StudiesQualifyingRecommendationResistanceRiskSamplingScreening for Ovarian CancerSerumSpecificitySurvival RateSymptomsTestingTimeTumor DebulkingUltrasonographyUnited KingdomUnited States Preventative Services Task ForceVaginaValidationWomanbiomarker identificationbiomathematicsblood-based biomarkercancer biomarkerscancer survivalcandidate markercare costsclassification algorithmclinical diagnosisclinical practicecohortcollaborative trialdiagnostic valueearly detection biomarkersfeasibility testingfollow-upimprovedmortalitynoveloperationpopulation basedpre-clinicalprospectivescreeningtumortumor progression
项目摘要
ABSTRACT
Ovarian cancer (OC) is a deadly but often silent disease, showing no specific signs until it reaches advanced
stages. The 5-year survival rate for advanced OC is only 50%, as most tumors ultimately become resistant to
treatment.1,2 Advances in cytoreductive surgery and combination chemotherapy have improved 5-year survival
in patients with epithelial OC, but the rate of cure has not improved over the last two decades. Computer models
suggest that detection of OC in early stages (I-II) could substantially improve cure rates, but the low prevalence
of OC in the general postmenopausal population restricts early detection efforts. Definitive diagnosis requires
operative intervention, but a consensus is that no more than 10 operations should be performed to diagnose a
single OC (>10% positive predictive value, PPV). According to current requirements, a first-line biomarker-based
screening test must achieve a sensitivity (SN) of at least 75% and a specificity (SP) of 98%, which can then be
further increased to 99.6% by adding a second-line screening modality such as transvaginal sonography
(TVS). 1,3-6 Because available screening tests remain inadequate to merit wide implementation, based on our
strong preliminary findings the proposed project aims to develop a novel, widely translatable, and economically
feasible test that can reduce OC mortality rates. Currently, the only promising strategy developed in the United
Kingdom Collaborative Trial for OC screening (UKCTOCS), is sequential analysis of the marker CA125 in serum
over time (Risk of OC Algorithm, ROCA), followed by TVS. UKCTOCS yielded only a modest 20% decrease in
mortality, insufficient to prompt the US Preventive Services Task Force to change its recommendation against
population-based OC screening. 1 The most likely reason for such modest mortality reduction by CA125
measures is their insufficient lead-time (estimated interval for detection prior to symptoms-based diagnosis). Bio-
mathematical modeling suggests that OC progresses to late stages more than 1 year before symptoms onset, a
time range when CA125 levels offer only limited diagnostic power. Therefore, to improve current clinical practice,
novel screening algorithms allowing substantially longer lead-times are needed. Based on our strong preliminary
findings, we aim to develop and validate a 2-pronged approach, whereby a first-line multi-biomarker test
recognizes OC with high SN (>80%) and modest SP (>80%), followed by a second-line biomarker velocity-based
test in women who tested positive in the first test, that then yields a combined SP of 98%. Supporting this
approach, we have generated a preliminary classification algorithm (threshold-based algorithm, TBA) based on
one-time measurement of multiple biomarker concentrations, that identifies with 80%SN-70%SP women who
will develop OC 1-7 years later. We further identified several biomarkers that display robust temporal dynamics
(velocity) associated with OC development in the 1-7 YTD interval. We thus hypothesize that we can generate
a 2-step algorithm that provides >75%SN at >98%SP, by combining our novel TBA with a velocity-based
algorithm (VBA). In this approach, similar to ROCA, the positive results of the TBA would trigger frequent follow-
up screening with VBA. The crucial advantage of our proposed algorithm vs. UKCTOCS' ROCA is that our novel
combined algorithm will recognize OC more than 1 YTD, increasing the probability of detecting OC at early,
treatment-responsive stages. We have discovered, and will prioritize for integration into the tests, several
promising candidate pre-diagnostic OC biomarkers, including autoantibodies (AAbs). Our long-term goal is to
develop a robust, accurate and widely translatable early-stage screening algorithm for risk of OC. Our
immediate objectives are to enhance our biomarker-based classifiers for pre-diagnostic samples, developed in
preliminary studies, by adding new promising candidate biomarkers we have identified, and validate them in
independent pre-diagnostic samples. The Specific Aims are: 1. Generate and validate an optimized first-line
threshold-based classification algorithm with 1.5-7 years lead-time. We will assess whether new candidate
biomarkers can further improve the algorithm we developed in preliminary studies, and then validate the
optimized algorithms in pre-diagnostic PLCO samples. 2. Generate and validate a biomarker temporal
dynamics (velocity)-based algorithm. We will validate the promising candidate velocity-based biomarkers
identified in Aim 1 in pre-diagnostic serial samples from UKCTOCS and NROSS prospective studies and
generate a velocity-based classification algorithm for detecting OC, to complement and enhance the cut-off-
based algorithm(s) developed in Aim 1. 3. Determine the performance of a 2-step (threshold+velocity)–
based OC screening algorithm with 1.5-7 years lead-time in serial samples. We will determine the
cumulative performance of sequential algorithms including the threshold-based algorithm developed in Aim 1,
followed by the velocity-based algorithm developed in Aim 2, for OC screening in the 1.5-7 YTD interval, in serial
UKCTOCS samples. In summary, we anticipate our results will yield development and validation of the first
blood biomarker-based algorithms with the required >75% SN, >98% SP, for reliably classifying OC in preclinical
samples collected 1.5-7 YTD. These algorithms will be ready for validation in prospective screening clinical trials
to evaluate the effect of early detection upon OC survival. The proposal is supported by extensive preliminary
data and will be carried out by a highly qualified, multi-disciplinary research team.
抽象的
卵巢癌(OC)是一种致命但静音疾病,直到达到高级才显示出任何特定迹象
阶段。高级OC的5年生存率仅为50%,因为大多数肿瘤最终都能抵抗
1,2细胞减少手术和联合化疗的进展提高了5年生存率
在上皮OC的患者中,但是在过去的二十年中,治愈率没有提高。计算机型号
表明在早期(I-II)中检测OC可以大大提高治疗率,但患病率低
绝经后人口中的OC限制了早期发现工作。确定的诊断要求
手术干预措施,但达成共识是,应进行不超过10次操作以诊断
单个OC(> 10%的阳性预测值,PPV)。根据当前的要求,基于一线生物标志物
筛选测试必须达到至少75%的灵敏度(SN),而特异性(SP)为98%,然后可以是
通过添加二线筛选方式(例如经阴道超声处理)进一步增加到99.6%
(电视)。 1,3-6,因为根据我们的
强有力的初步发现该拟议项目旨在开发一部小说,可广泛翻译和经济。
可行的测试可以降低OC死亡率。目前,联合国制定的唯一承诺策略
OC筛查的王国协作试验(UKCTOC)是对串行中标记CA125的顺序分析
随着时间的流逝(OC算法的风险,ROCA),然后是电视。 UKCTOC仅减少20%
死亡率,不足以促使美国预防服务工作组改变其建议
基于人群的OC筛查。 1 CA125降低这种适度死亡率的最可能原因
措施是他们的交货时间不足(在基于症状的诊断之前进行检测的估计间隔)。生物
数学建模表明,OC在症状发作之前超过1年的后期阶段
CA125水平仅提供有限的诊断能力时的时间范围。因此,为了改善当前的临床实践,
新颖的筛选算法需要大大较长的铅时间。基于我们强大的初步
调查结果,我们旨在开发和验证一种两管齐下的方法,从而进行一线多生物标志物测试
识别高SN(> 80%)和适度SP(> 80%)的OC,其次是二线生物标志物速度
在第一次测试中测试阳性的女性的测试,然后产生98%的合并SP。支持这个
方法,我们基于
多个生物标志物浓度的一次性测量,该浓度识别为80%SN-70%SP女性
1 - 7年后将开发OC。我们进一步确定了几种显示强大临时动力学的生物标志物
(速度)与1-7 YTD间隔中OC开发相关的(速度)。因此,我们假设我们可以生成
通过将我们的新颖的TBA与基于速度的基于速度相结合的2步算法,可在> 98%的SP下提供> 75%的SN
算法(VBA)。在这种方法中,类似于Roca,TBA的积极结果将经常触发 -
用VBA进行筛选。我们提出的算法与UKCTOC的ROCA的关键优势是我们的小说
组合算法将识别OC超过1 YTD,从而增加了在早期检测OC的可能性,
治疗响应阶段。我们已经发现,并将优先级集成到测试中,有几个
有希望的候选诊断前OC生物标志物,包括自身抗体(AABS)。我们的长期目标是
为OC风险开发出强大,准确且广泛可翻译的早期筛选算法。我们的
直接的目标是增强我们基于生物标志物的分类器,用于诊断前样本,开发
初步研究,通过添加我们已经确定的新承诺候选生物标志物,并验证它们
独立的诊断前样品。具体目的是:1。生成并验证优化的第一线
基于阈值的分类算法,交货时间为1。5 - 7年。我们将评估新候选人是否
生物标志物可以进一步改善我们在初步研究中开发的算法,然后验证
诊断前PLCO样品中优化的算法。 2。生成并验证生物标志物临时
基于动力学(速度)算法。我们将验证基于候选速度的承诺候选生物标志物
在AIM 1中确定的诊断前串行样本中的UKCTOC和NROSS前瞻性研究和
生成基于速度的分类算法,用于检测OC,以补充和增强临界值 -
基于AIM1。3中开发的算法(S)。确定2步(阈值+速度)的性能 -
基于串行样品的OC筛查算法为1。5 - 7年。我们将确定
顺序算法的累积性能,包括在AIM 1中开发的基于阈值的算法
其次是AIM 2中开发的基于速度的算法,以在1.5-7 ytd间隔中进行OC筛选
UKCTOC样品。总而言之,我们预计我们的结果将产生第一个的开发和验证
基于血液生物标志物的算法,所需的> 75%SN,> 98%SP,用于可靠的临床前分类OC
样品收集了1.5-7 ytd。这些算法将准备好在前瞻性筛查临床试验中验证
评估早期检测对OC存活的影响。该提案得到了广泛的初步支持
数据并将由高度合格的多学科研究团队进行。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Stacking Machine Learning Algorithms for Biomarker-Based Preoperative Diagnosis of a Pelvic Mass.
- DOI:10.3390/cancers14051291
- 发表时间:2022-03-02
- 期刊:
- 影响因子:5.2
- 作者:Shaw R;Lokshin AE;Miller MC;Messerlian-Lambert G;Moore RG
- 通讯作者:Moore RG
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ROBERT C BAST其他文献
ROBERT C BAST的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ROBERT C BAST', 18)}}的其他基金
The SIK2 Inhibitor GRN-300 Enhances PARP Inhibitor Sensitivity and Cytotoxic T-Cell Function in Ovarian Cancer
SIK2 抑制剂 GRN-300 增强卵巢癌中 PARP 抑制剂的敏感性和细胞毒性 T 细胞功能
- 批准号:
10709229 - 财政年份:2023
- 资助金额:
$ 72.43万 - 项目类别:
The University of Texas MD Anderson Cancer Center SPORE in Ovarian Cancer
德克萨斯大学 MD 安德森癌症中心 SPORE 在卵巢癌中的应用
- 批准号:
10709227 - 财政年份:2023
- 资助金额:
$ 72.43万 - 项目类别:
DIRAS3 disrupts K-RAS clustering and signaling, enhancing autophagy and response to autophagy inhibition
DIRAS3 破坏 K-RAS 聚类和信号传导,增强自噬和对自噬抑制的反应
- 批准号:
10707965 - 财政年份:2022
- 资助金额:
$ 72.43万 - 项目类别:
Development of Novel Ovarian Cancer Biomarkers for Early Detection Algorithms
开发用于早期检测算法的新型卵巢癌生物标志物
- 批准号:
10410452 - 财政年份:2020
- 资助金额:
$ 72.43万 - 项目类别:
Development of Novel Ovarian Cancer Biomarkers for Early Detection Algorithms
开发用于早期检测算法的新型卵巢癌生物标志物
- 批准号:
10226017 - 财政年份:2020
- 资助金额:
$ 72.43万 - 项目类别:
Development of Novel Ovarian Cancer Biomarkers for Early Detection Algorithms
开发用于早期检测算法的新型卵巢癌生物标志物
- 批准号:
9916297 - 财政年份:2020
- 资助金额:
$ 72.43万 - 项目类别:
Project 4: SIK2 PROVIDES A NOVEL TARGET FOR OVARIAN CANCER THERAPY IN COMBINATION WITH PACLITAXEL AND INHIBITORS OF PARP
项目 4:SIK2 结合紫杉醇和 PARP 抑制剂为卵巢癌治疗提供新靶点
- 批准号:
10005298 - 财政年份:2017
- 资助金额:
$ 72.43万 - 项目类别:
U.T. M. D. Anderson Cancer Center SPORE in Ovarian Cancer
UT
- 批准号:
9356787 - 财政年份:2017
- 资助金额:
$ 72.43万 - 项目类别:
相似国自然基金
基于单浆细胞筛选新技术的自动化抗体发现平台构建及工作机制研究
- 批准号:32301266
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高通量自动化连续定向进化平台筛选纳米抗体的研究和应用
- 批准号:U22A20552
- 批准年份:2022
- 资助金额:255.00 万元
- 项目类别:联合基金项目
抗单体C反应蛋白抗体在狼疮肾炎中参与补体调理与影响凋亡物质清除的机制研究
- 批准号:81100497
- 批准年份:2011
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
The University of Texas MD Anderson Cancer Center SPORE in Ovarian Cancer
德克萨斯大学 MD 安德森癌症中心 SPORE 在卵巢癌中的应用
- 批准号:
10709227 - 财政年份:2023
- 资助金额:
$ 72.43万 - 项目类别:
Blood-Based Biomarkers for Personalized Risk Assessment of Breast and Ovarian Cancer
用于乳腺癌和卵巢癌个性化风险评估的血液生物标志物
- 批准号:
10721949 - 财政年份:2023
- 资助金额:
$ 72.43万 - 项目类别:
Accelerating Medicines Partnership-Autoimmune and Immunologic Disease Tissue Research Core Admin Supplement: Preclinical Studies in Sjogren's
加速药物合作 - 自身免疫和免疫疾病组织研究核心管理补充:干燥病的临床前研究
- 批准号:
10834635 - 财政年份:2022
- 资助金额:
$ 72.43万 - 项目类别:
Identification of Risk Factors for predicting outcomes of COVID-19-Related Multisystem Inflammatory Syndrome in Children (MISC) using Real World Clinical Data
使用真实世界临床数据识别预测 COVID-19 相关儿童多系统炎症综合征 (MISC) 结果的风险因素
- 批准号:
10527735 - 财政年份:2022
- 资助金额:
$ 72.43万 - 项目类别:
Identification of Risk Factors for predicting outcomes of COVID-19-Related Multisystem Inflammatory Syndrome in Children (MISC) using Real World Clinical Data
使用真实世界临床数据识别预测 COVID-19 相关儿童多系统炎症综合征 (MISC) 结果的风险因素
- 批准号:
10679093 - 财政年份:2022
- 资助金额:
$ 72.43万 - 项目类别: