Mechanistic neural circuit models and principles
机械神经回路模型和原理
基本信息
- 批准号:10669698
- 负责人:
- 金额:$ 50.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-15 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:AccountingAnatomyAnimalsArchitectureAttentionBar CodesBehaviorBehavioralBenchmarkingBiologicalBrainBrain regionCollaborationsCommunicationCoupledDataData AnalysesDecision MakingDevelopmentDimensionsElectrophysiology (science)EnvironmentExperimental DesignsExperimental ModelsFutureGenetic MarkersGoalsInfrastructureInternationalLaboratoriesLearningLeftLinkMeasurementMethodsModelingMusNeural Network SimulationOutputPerformancePopulationProcessRegional AnatomyResearch PersonnelRewardsRunningSensoryStandardizationStatistical Data InterpretationStatistical ModelsStimulusStructureSynapsesTask PerformancesTestingTrainingWorkcell typedata sharingdesignexperimental studylearning strategynetwork modelsneuralneural circuitneural modelneuromechanismnoveloperationpredictive modelingprojectinrecurrent neural networksensory inputsynergismtheoriestool
项目摘要
Summary/Abstract, Project 3
Even in the same environment, an animal may make different decisions on different occasions,
because its internal state, such as engagement in a task, interacts powerfully with external inputs
to determine behavior. This proposal’s overarching goal is to understand how internal states
influence decisions and to identify the underlying neural mechanisms. The team is part of the
International Brain Laboratory (IBL), an established consortium that has developed a
standardized mouse decision-making task and standardized methods for training, neural
measurement, and data analysis, along with a working, scalable infrastructure for sharing
data. The goal of Project 3 is to synthesize the findings of experimental Projects 1, 2, 4, and 5
into circuit-level mechanistic models of the IBL task. The task involves hierarchical, probabilistic
decision-making through sensory evidence integration to make left-right decisions about where
the stimulus is on the current trial, along with integration on a longer timescale to estimate the
slowly varying left-right biases in where the stimuli are more likely to appear. Initial models not
only will be trained to reproduce expert-level task performance, but also will include general
biological constraints on neural dynamics and anatomical connectivity gradients. They will be
analyzed for their learning dynamics, and for which parameters are the handles through which
internal states exert their effects on circuit computation and dynamics. These models will yield
predictions on multiple levels of abstraction: state-space predictions, network structure
predictions, and anatomical predictions. The resulting models will be deployed in a tight loop with
all experimental projects, to guide experimental design; serve as ground-truth testbeds for
perturbative and causal connectivity analysis studies; and link statistical analysis results from data
with mechanistic interpretations. The results of these experiment-model prediction comparisons
will then be used to further refine and elaborate the models. Project 3 researchers will incorporate
the experimentally derived neural activity data, causal connectivity by anatomical region data, and
structural cell-type and connectivity data to further constrain the models. Finally, Project 3 will
also generate highly simplified abstract neural circuit models, using novel methods of model
compression to elucidate the general principles underlying hierarchical decision-making in the
brain. All this work involves the use and de novo development of cutting-edge modeling,
statistical, and data analysis tools. The work of Project 3 will thus deliver a mechanistic circuit-
level understanding of this proposal’s overarching hypothesis that information flow and
communication across brain regions during decision-making depends on internal state.
摘要/摘要,项目 3
即使在相同的环境中,动物在不同的场合也可能做出不同的决定,
因为它的内部状态(例如参与任务)与外部输入相互作用
确定行为的总体目标是了解内部状态。
该团队是影响决策并确定潜在神经机制的一部分。
国际脑实验室(IBL)是一个成熟的联盟,开发了
标准化小鼠决策任务和标准化训练方法、神经
测量和数据分析,以及可运行的、可扩展的共享基础设施
项目 3 的目标是综合实验项目 1、2、4 和 5 的结果。
转化为 IBL 任务的电路级机械模型 该任务涉及分层、概率。
通过感官证据整合做出左右决策
刺激措施是在当前的试验中进行的,并在更长的时间尺度上进行整合以估计
缓慢变化的左右偏差更有可能出现初始模型。
不仅将接受培训以重现专家级任务表现,而且还将包括一般性任务
对神经动力学和解剖连接梯度的生物学限制。
分析他们的学习动态,以及哪些参数是控制柄
内部状态对电路计算和动力学产生影响。
多个抽象级别的预测:状态空间预测、网络结构
预测和解剖预测所产生的模型将在紧密的循环中部署。
所有实验项目,作为实验指导设计;
扰动和因果连接分析研究;并将数据的统计分析结果联系起来
这些实验模型预测比较的结果。
然后将用于进一步完善和完善项目 3 研究人员将纳入的模型。
实验得出的神经活动数据、解剖区域数据的因果连接性,以及
最后,项目 3 将提供结构细胞类型和连接数据来进一步约束模型。
还可以使用新颖的模型方法生成高度抽象的神经电路模型
压缩以阐明层次决策的一般原则
所有这些工作都涉及尖端建模的使用和从头开发,
因此,项目 3 的工作将提供一个机械电路。
对该提案的总体假设的理解程度,即信息流动和
决策过程中大脑区域之间的交流取决于内部状态。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ila R. Fiete其他文献
Ila R. Fiete的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ila R. Fiete', 18)}}的其他基金
CRCNS: Computational principles of mental simulation in the entorhinal and parietal cortex
CRCNS:内嗅和顶叶皮层心理模拟的计算原理
- 批准号:
10396142 - 财政年份:2021
- 资助金额:
$ 50.99万 - 项目类别:
CRCNS: Computational principles of mental simulation in the entorhinal and parietal cortex
CRCNS:内嗅和顶叶皮层心理模拟的计算原理
- 批准号:
10463855 - 财政年份:2021
- 资助金额:
$ 50.99万 - 项目类别:
CRCNS: Computational principles of mental simulation in the entorhinal and parietal cortex
CRCNS:内嗅和顶叶皮层心理模拟的计算原理
- 批准号:
10630321 - 财政年份:2021
- 资助金额:
$ 50.99万 - 项目类别:
Mechanistic neural circuit models and principles
机械神经回路模型和原理
- 批准号:
10294675 - 财政年份:2021
- 资助金额:
$ 50.99万 - 项目类别:
Mechanistic neural circuit models and principles
机械神经回路模型和原理
- 批准号:
10461999 - 财政年份:2021
- 资助金额:
$ 50.99万 - 项目类别:
Neural ensembles underlying natural tracking behavior
自然跟踪行为背后的神经集合
- 批准号:
9218710 - 财政年份:2015
- 资助金额:
$ 50.99万 - 项目类别:
Neural ensembles underlying natural tracking behavior
自然跟踪行为背后的神经集合
- 批准号:
9012581 - 财政年份:2015
- 资助金额:
$ 50.99万 - 项目类别:
相似国自然基金
儿童脊柱区腧穴针刺安全性的发育解剖学及三维数字化研究
- 批准号:82360892
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
寰枢椎脱位后路钉棒内固定系统复位能力优化的相关解剖学及生物力学研究
- 批准号:82272582
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
亚热带典型阔叶树种径向生长的解剖学特征及其碳分配调控机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于次生乳管网络结构发育比较解剖学和转录组学的橡胶树产胶机制研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
基于垂体腺瘤海绵窦侵袭模式的相关膜性解剖学及影像学研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Defining the host and pathogen determinants of peptidoglycan induced pathophysiology in Lyme disease
定义莱姆病肽聚糖诱导的病理生理学的宿主和病原体决定因素
- 批准号:
10566961 - 财政年份:2023
- 资助金额:
$ 50.99万 - 项目类别:
Interactions of Cryptococcus neoformans with mononuclear phagocytes in the brain
新型隐球菌与大脑中单核吞噬细胞的相互作用
- 批准号:
10667732 - 财政年份:2023
- 资助金额:
$ 50.99万 - 项目类别:
Determine the role of atmospheric particulate matter pollutants in contributing to Lewy Body Dementia
确定大气颗粒物污染物在路易体痴呆症中的作用
- 批准号:
10662930 - 财政年份:2023
- 资助金额:
$ 50.99万 - 项目类别: