Cell Cycle and Metabolism in Chronically Injured Renal Tubules
慢性损伤肾小管的细胞周期和代谢
基本信息
- 批准号:10661066
- 负责人:
- 金额:$ 45.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-06-13 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:5&apos-AMP-activated protein kinaseAffectAmericanApoptosisAutocrine CommunicationCDK4 geneCatalytic DomainCell CycleCell Cycle ProgressionCell Cycle RegulationCell RespirationCellsCellular Metabolic ProcessChronicChronic Kidney FailureCitric Acid CycleCyclin D1Cyclin-Dependent KinasesCyclinsDNA biosynthesisDataDevelopmentDisease modelElectron TransportEnvironmentEnzymesEpithelial CellsEpitheliumFDA approvedFibrosisG2/M ArrestGeneticGenus HippocampusGlucoseGlycolysisHypoxiaInflammationInflammatoryInjuryInjury to KidneyKidneyKidney DiseasesKnockout MiceLactic acidLinkMediatingMetabolicMetabolismMitochondriaMitosisMusMyofibroblastNatural regenerationNutrientParacrine CommunicationPathway interactionsPharmaceutical PreparationsPhenotypePlayProcessProliferatingPyruvateRenal tubule structureResolutionRodentRoleS phaseSignal PathwaySignal TransductionStructureTestingTissuesTubular formationanaerobic glycolysiscardiovascular disorder riskconditional knockoutcytokineepithelial injuryepithelial repairfatty acid oxidationglucose metabolismimprovedin vitro activityin vivoinjuredinnovationkidney fibrosiskidney metabolismmetabolomicsmouse modelnew therapeutic targetnoveloxidationpharmacologicpreclinical studyrepairedresponseresponse to injurystable isotopesuperresolution microscopytool
项目摘要
Chronic kidney disease (CKD) affects almost 15% of Americans, and renal injury often targets the renal tubule
epithelia. How these tubules respond can determine whether the kidney undergoes repair or tubulointerstitial
fibrosis (TIF), the common hallmark of progressive CKD. This proposal focuses on understanding how chronic
renal injury induces changes in the renal tubular cell cycle and metabolism and how these changes affect
tubular survival and the development of TIF. It is well known that cell cycle, metabolism, and mitochondrial
function are all closely coordinated processes, but it is not clear how epithelial G1 to S cell cycle progression
affects metabolism in the CKD kidney. Preliminary data suggests that reducing cell cycle progression from G1
to S phase in renal tubules protects against fibrosis in rodent CKD models and decreases tubular apoptosis. In
addition, reducing G1 to S progression increased glucose oxidation, the metabolism of glucose to pyruvate
which is then oxidized in the mitochondria through the citric acid cycle and electron transport chain. This
proposal will test the hypothesis that reducing epithelial G1 to S phase progression in CKD protects
against epithelial injury and fibrosis through altered metabolism. To test this, Aim 1 will use either a
pharmacologic (palbociclib) or a genetic (conditionally delete cyclin D1 in renal tubules) approach to reduce G1
to S cell cycle progression in mice. We hypothesize that decreasing G1 progression to S phase in epithelial
cells is protective in CKD models by reducing tubular injury and fibrosis. Our preliminary data show that
reducing cell cycle progression in both injured kidney tissue and in isolated tubule cells also suppresses
signaling pathways and inflammatory cytokines associated with kidney injury. This aim investigates how
reducing cell cycle progression may alter these signaling pathways to reduce tubule injury and myofibroblast
activation by autocrine and paracrine signaling, respectively. The second aim investigates the metabolic
changes that occur in injured tubules with reduced G1 to S phase progression using the Seahorse bioflux
analyzer, 14C-pyruvate oxidation studies ex vivo, and stable isotopic metabolomics. We hypothesize that
reducing epithelial cell cycle progression increases glucose oxidation leading to better epithelial survival and
less fibrosis, in part, through the AMP-activated protein kinase pathway. We will also investigate how glucose
oxidation in renal tubules, independent of metabolism, affects the response to chronic injury. The impact of cell
cycle progression on mitochondrial function and structure will also be defined using Oroboros and super-
resolution microscopy. These studies should provide novel information about how changes in epithelial cell
cycle and metabolism affect the response to chronic renal injury with the potential identification of novel
therapeutic targets to treat CKD.
慢性肾病 (CKD) 影响着近 15% 的美国人,肾损伤通常针对肾小管
上皮细胞。这些肾小管如何反应可以决定肾脏是否进行修复或肾小管间质修复
纤维化(TIF)是进行性 CKD 的共同标志。该提案的重点是了解慢性病如何
肾损伤会引起肾小管细胞周期和代谢的变化以及这些变化如何影响
肾小管的存活和 TIF 的发展。众所周知,细胞周期、新陈代谢和线粒体
功能都是紧密协调的过程,但尚不清楚上皮G1到S细胞周期如何进展
影响 CKD 肾脏的代谢。初步数据表明,减少 G1 期的细胞周期进展
肾小管中的 S 期可防止啮齿类 CKD 模型中的纤维化并减少肾小管细胞凋亡。在
此外,减少 G1 到 S 的进程会增加葡萄糖氧化,即葡萄糖代谢为丙酮酸
然后通过柠檬酸循环和电子传递链在线粒体中被氧化。这
该提案将检验以下假设:减少 CKD 中上皮 G1 期进展至 S 期可保护
通过改变代谢来对抗上皮损伤和纤维化。为了测试这一点,目标 1 将使用
药物(palbociclib)或遗传(有条件地删除肾小管中的细胞周期蛋白 D1)方法来减少 G1
小鼠 S 细胞周期进展。我们假设减少上皮细胞 G1 期向 S 期的进展
细胞通过减少肾小管损伤和纤维化在 CKD 模型中具有保护作用。我们的初步数据表明
减少受损肾组织和孤立肾小管细胞中的细胞周期进程也抑制
与肾损伤相关的信号通路和炎症细胞因子。该目标旨在研究如何
减少细胞周期进展可能会改变这些信号传导途径,从而减少肾小管损伤和肌成纤维细胞损伤
分别通过自分泌和旁分泌信号激活。第二个目标是研究代谢
使用 Seahorse 生物通量减少 G1 期至 S 期进展的受损肾小管中发生的变化
分析仪、14C-丙酮酸离体氧化研究和稳定同位素代谢组学。我们假设
减少上皮细胞周期进展增加葡萄糖氧化,从而改善上皮细胞存活率
减少纤维化,部分是通过 AMP 激活的蛋白激酶途径实现的。我们还将研究葡萄糖如何
肾小管的氧化与代谢无关,影响对慢性损伤的反应。细胞的影响
线粒体功能和结构的循环进展也将使用 Oroboros 和 super- 来定义
分辨率显微镜。这些研究应该提供关于上皮细胞如何变化的新信息
循环和代谢影响对慢性肾损伤的反应,并有可能鉴定新的
治疗 CKD 的治疗目标。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Leslie S Gewin其他文献
Leslie S Gewin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Leslie S Gewin', 18)}}的其他基金
Epithelial Beta-catenin Signaling Improves Chronic Renal Injury
上皮β-连环蛋白信号传导改善慢性肾损伤
- 批准号:
10266013 - 财政年份:2018
- 资助金额:
$ 45.34万 - 项目类别:
Epithelial Beta-catenin Signaling Improves Chronic Renal Injury
上皮β-连环蛋白信号传导改善慢性肾损伤
- 批准号:
10612208 - 财政年份:2018
- 资助金额:
$ 45.34万 - 项目类别:
Cell Cycle and Metabolism in Chronically Injured Renal Tubules
慢性损伤肾小管的细胞周期和代谢
- 批准号:
10366536 - 财政年份:2016
- 资助金额:
$ 45.34万 - 项目类别:
Cell Cycle and Metabolism in Chronically Injured Renal Tubules
慢性损伤肾小管的细胞周期和代谢
- 批准号:
10493373 - 财政年份:2016
- 资助金额:
$ 45.34万 - 项目类别:
TGF-beta Pathways that Protect Epithelia in Chronic Renal Injury
慢性肾损伤中保护上皮细胞的 TGF-β 通路
- 批准号:
9294119 - 财政年份:2016
- 资助金额:
$ 45.34万 - 项目类别:
TGF-beta Pathways that Protect Epithelia in Chronic Renal Injury
慢性肾损伤中保护上皮细胞的 TGF-β 通路
- 批准号:
9337599 - 财政年份:2016
- 资助金额:
$ 45.34万 - 项目类别:
相似国自然基金
AMPK通过调控Smurf1的SUMO化抑制创伤性异位骨化的研究
- 批准号:31900852
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
血管微环境中内皮细胞AMPK抑制心肌纤维化的功能与机制研究
- 批准号:81800273
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于AMPK-FXR-BSEP介导的齐墩果酸所致胆汁淤积性肝损伤作用机制研究
- 批准号:81760678
- 批准年份:2017
- 资助金额:35.0 万元
- 项目类别:地区科学基金项目
基于AMPK信号通路研究菝葜黄酮调控脂类代谢分子机制
- 批准号:81760157
- 批准年份:2017
- 资助金额:32.0 万元
- 项目类别:地区科学基金项目
PRKAG2基因自发新突变K485E引起心脏电生理异常的机制研究
- 批准号:81400259
- 批准年份:2014
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Regulation of CSE-Derived Hydrogen Sulfide in the Heart
CSE 衍生的硫化氢在心脏中的调节
- 批准号:
10659832 - 财政年份:2023
- 资助金额:
$ 45.34万 - 项目类别:
Nutrient-sensor O-GlcNAc Transferase Regulation of Autophagy in Homeostatis of Pancreatic Beta-cell Mass and Function
营养传感器 O-GlcNAc 转移酶对胰腺 β 细胞质量和功能稳态中自噬的调节
- 批准号:
10907874 - 财政年份:2023
- 资助金额:
$ 45.34万 - 项目类别:
Deciphering the Role of AMPK in Doxorubicin Cardiotoxicity
解读 AMPK 在阿霉素心脏毒性中的作用
- 批准号:
10580326 - 财政年份:2023
- 资助金额:
$ 45.34万 - 项目类别:
Development of caspase-6 inhibitors for treatment of NASH
开发治疗 NASH 的 caspase-6 抑制剂
- 批准号:
10608905 - 财政年份:2023
- 资助金额:
$ 45.34万 - 项目类别:
The non-canonical Collagen I-DDR1 signaling regulating protein synthesis during metastasis
非经典胶原蛋白 I-DDR1 信号在转移过程中调节蛋白质合成
- 批准号:
10607947 - 财政年份:2023
- 资助金额:
$ 45.34万 - 项目类别: