Develop light-oxygen-voltage (LOV) sensing optogenetics tools through novel computational approaches with experimental validation
通过经过实验验证的新颖计算方法开发光氧电压 (LOV) 传感光遗传学工具
基本信息
- 批准号:10661223
- 负责人:
- 金额:$ 44.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAwardBiologicalCommunicationDevelopmentDimensionsGenetic EngineeringKineticsLightMachine LearningMethodsModelingMolecular ConformationNamesNatural regenerationOpticsOxygenProceduresPropertyProtein ConformationProteinsProtocols documentationReactionRegulationResearchResearch ActivitySamplingTechniquesTertiary Protein StructureTheoretical modelTimeTraining ActivityValidationWitWorkautoencoderbiophysical propertiescircadian pacemakercomputerized toolsdeep learninggraduate studentimprovedkinetic modellearning strategymachine learning methodmolecular dynamicsmutantnetwork modelsnoveloptogeneticssimulationskillstooltool developmentundergraduate studentvoltage
项目摘要
SUMMARY
Optogenetics is a powerful technique that integrates the use of light (optics) and genetic engineering. Light-
oxygen-voltage (LOV) domains are light-responsive circadian clock regulation proteins and serve as a novel
platform for the optogenetic tools development. Delineating allosteric mechanisms of various LOV domains is
critical for such development. Molecular dynamics (MD) simulations are the main computational tools to reveal
allosteric mechanisms as spatial-temporal information at the atomic level. However, there are two major road-
blocks to the currently available MD simulation methods to elucidate LOV domain mechanisms: 1) limited time
scale; 2) lack of kinetic information. Many enhanced sampling methods were developed to implicitly increase the
accessible time scale of dynamics simulations, but are not suitable for simulations of protein allosteric mecha-
nisms due to the requirement of constructing reaction coordinates a priori. To address this issue, we recently
applied deep learning methods, named autoencoders, to develop novel dimensionality reduction models for al-
losteric proteins. The main advantage of these models is the ability to accurately regenerate protein tertiary
structure from the low dimensional space, a.k.a. latent space. There is also a lack of kinetics models for protein
conformational changes underlying allostery. We developed a directed kinetic transition network (DKTN) model
during the previous award period to model kinetics of protein conformational change based on MD simulations.
Based on our recent work, in this application, we will continue to develop two new methods, the auto-encoded
latent space (AELS) sampling methods and machine learning based directed kinetic transition network (ML-
DKTN) methods, and apply these novel methods to elucidate the LOV domain mechanisms. With the experi-
mental validation, we will further develop key mutants of the selected LOV domains as new optogenetic tools.
We expect to develop a set of efficient computational tools to obtain allosteric function-related conformational
ensembles and kinetics models. We will apply these tools to build conformational ensembles and kinetics models
for key LOV domains proteins and their mutants to delineate their underlying allosteric mechanisms. These the-
oretical models could provide direct guidance for the further development of optogenetic tools based on the
selected LOV domains. The promising mutants identified in the proposed study will be subjected to experimental
verification through biophysical characterization. The proposed research activities will also provide unique train-
ing activities for motivated undergraduate and graduate students with various backgrounds to contribute to
scientific research and improve their research, interpersonal, and communication skills.
概括
光遗传学是一种集成了光(光学)和基因工程的强大技术。光-
氧电压(LOV)结构域是光响应生物钟调节蛋白,可作为一种新型生物钟调节蛋白。
光遗传学工具开发平台。描述各种 LOV 域的变构机制是
对于这样的发展至关重要。分子动力学(MD)模拟是揭示分子动力学的主要计算工具
作为原子水平时空信息的变构机制。然而,有两条主要道路——
目前可用的MD模拟方法来阐明LOV域机制:1)有限的时间
规模; 2)缺乏动力学信息。开发了许多增强采样方法来隐式增加
动力学模拟的可访问时间尺度,但不适合蛋白质变构机制的模拟
由于需要先验地构建反应坐标而导致的nisms。为了解决这个问题,我们最近
应用深度学习方法(称为自动编码器)来开发新颖的降维模型
洛斯特里克蛋白。这些模型的主要优点是能够准确地再生蛋白质三级
低维空间(又名潜在空间)的结构。还缺乏蛋白质的动力学模型
变构基础上的构象变化。我们开发了定向动力学转换网络(DKTN)模型
在上一个奖项期间,基于 MD 模拟来模拟蛋白质构象变化的动力学。
基于我们最近的工作,在这个应用程序中,我们将继续开发两种新方法,自动编码
潜在空间(AELS)采样方法和基于机器学习的定向动力学转移网络(ML-
DKTN)方法,并应用这些新方法来阐明 LOV 域机制。随着经验
心理验证后,我们将进一步开发所选 LOV 结构域的关键突变体作为新的光遗传学工具。
我们期望开发一套高效的计算工具来获得变构功能相关的构象
系综和动力学模型。我们将应用这些工具来构建构象系综和动力学模型
用于关键 LOV 结构域蛋白及其突变体,以描述其潜在的变构机制。这些——
理论模型可以为基于光遗传学工具的进一步开发提供直接指导
选定的 LOV 域。在拟议的研究中确定的有前途的突变体将接受实验
通过生物物理表征进行验证。拟议的研究活动还将提供独特的培训-
为具有不同背景、积极进取的本科生和研究生开展的活动
科学研究并提高他们的研究、人际交往和沟通技巧。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peng Tao其他文献
Peng Tao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
The contribution of air pollution to racial and ethnic disparities in Alzheimer’s disease and related dementias: An application of causal inference methods
空气污染对阿尔茨海默病和相关痴呆症的种族和民族差异的影响:因果推理方法的应用
- 批准号:
10642607 - 财政年份:2023
- 资助金额:
$ 44.45万 - 项目类别:
3D Methodology for Interpreting Disease-Associated Genomic Variation in RAG2
解释 RAG2 中疾病相关基因组变异的 3D 方法
- 批准号:
10724152 - 财政年份:2023
- 资助金额:
$ 44.45万 - 项目类别:
Bridging the gap: joint modeling of single-cell 1D and 3D genomics
弥合差距:单细胞 1D 和 3D 基因组学联合建模
- 批准号:
10572539 - 财政年份:2023
- 资助金额:
$ 44.45万 - 项目类别:
4D controllable extracellular matrix properties to guide iPSC-derived intestinal organoid fate and form
4D 可控细胞外基质特性指导 iPSC 衍生的肠道类器官的命运和形成
- 批准号:
10644759 - 财政年份:2023
- 资助金额:
$ 44.45万 - 项目类别:
Stem Cells, Cell Therapies, and Bioengineering in Lung Biology and Lung Diseases
肺生物学和肺部疾病中的干细胞、细胞疗法和生物工程
- 批准号:
10753310 - 财政年份:2023
- 资助金额:
$ 44.45万 - 项目类别: