Hybrid Hydrogel Biomaterials Comprising Clickable Decellularized Extracellular Matrix for Engineering Dynamic 3D Models of Fibrosis
包含可点击脱细胞细胞外基质的混合水凝胶生物材料,用于工程纤维化动态 3D 模型
基本信息
- 批准号:10661783
- 负责人:
- 金额:$ 53.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAccelerationActinsAgeAlveolarAnimal ModelArchitectureAtomic Force MicroscopyBiocompatible MaterialsBiologicalCell CommunicationCell Culture TechniquesCellsChronicClinicalCollagenDataDepositionDiagnosisDiseaseDistalElderlyEncapsulatedEngineeringEpitheliumExperimental DesignsExposure toExtracellular MatrixFibroblastsFibrosisFoundationsFunctional disorderGasesGoalsHistologyHumanHybridsHydrogelsImageIn Situ HybridizationIn VitroLaboratoriesLifeLightLocationLungLung diseasesMechanicsMediatorMedicalMesenchymalMethodsMicrofabricationModelingModulusMolecularMorbidity - disease rateMusOutputPathogenesisPathologyPathway interactionsPatientsPhenotypePhysiologicalPhysiologyPlatelet-Derived Growth Factor alpha ReceptorPopulationPositioning AttributePrecision therapeuticsProteinsPulmonary FibrosisReactionReporterReproducibilityResearch PersonnelRespiratory FailureRheologySeverity of illnessSignal PathwaySmooth MuscleSourceStainsStatistical Data InterpretationStructureStructure of parenchyma of lungSurvival RateSystemTechnologyTestingTherapeuticTimeTissue SampleTissuesType II Epithelial Receptor CellVertebral columnWorkalveolar epitheliumantifibrotic treatmentbiomaterial compatibilitydesigndrug discoverydrug efficacyethylene glycolfibrotic lunghuman diseasehuman modelhuman tissueidiopathic pulmonary fibrosisimprovedin vitro Modelin vitro activityinnovationmechanical propertiesmortalitynew therapeutic targetnovelpre-clinicalprogramsprotein expressionresponsescreeningspatiotemporaltargeted treatmentthree dimensional cell culturethree-dimensional modelingtooltranscriptome sequencing
项目摘要
PROJECT SUMMARY
Fibrotic disorders account for a significant source of global morbidity and mortality. Idiopathic pulmonary
fibrosis (IPF) is a chronic, progressive, and life-threatening lung disease most prevalent in elderly populations.
IPF impacts 100,000 patients in the U.S. alone and there are approximately 34,000 new global diagnoses each
year. Most patients with IPF succumb to respiratory failure within 3-5 years and the only clinically available
therapeutic treatments do not cure the disease. As the average age of the U.S. population increases, it is
imperative for researchers and practitioners to work together to identify new targets to halt or reverse IPF.
Discovery of new therapeutic targets for IPF through traditional cell culture techniques and pre-clinical animal
models has several limitations because these systems do not adequately reproduce key aspects of human
physiology. Most importantly, dynamic cell-matrix and cell-cell interactions that are difficult to recapitulate in
vitro drive the progression of fibrosis: it is not clear, for example, whether changes in the extracellular matrix
(ECM) composition or the subsequent alterations in mechanical properties of the surrounding tissues are the
more potent drivers of IPF, i.e., the best target for therapeutics. New tools and technologies that enable us to
dynamically study the pathogenesis of fibrosis over time remain an unresolved challenge.
My laboratory has developed novel methods to synthesize and microfabricate a new class of biomaterials to
conduct dynamic cell-ECM studies, not currently possible in traditional models of fibrosis. Our innovative
platform combines a phototunable poly(ethylene glycol) (PEG) backbone with clickable decellularized ECM
(dECM) from healthy or diseased lung tissue so that we may decouple fibrotic tissue composition (e.g.,
increased collagen content) from subsequent changes in mechanical properties (e.g., increased stiffness).
Specifically, healthy or IPF lung dECM will be incorporated into soft (1-5 kPa) hydrogel matrices that mimic
healthy tissue, then exposure to focused light will dynamically initiate stiffening to fibrotic levels (>10 kPa).
Three aims are proposed to engineer and implement this biomaterials-based strategy for building novel, high-
fidelity in vitro models of IPF. AIM I: Engineer the structure, composition, and dynamic mechanics of PEG-
dECM cell culture platforms to recapitulate distal lung tissue; AIM II: Interrogate the impact of composition and
mechanical properties on fibroblast activation using dynamic PEG-dECM biomaterial platforms; and AIM III:
Identify druggable mechanosensitive targets of the fibrotic activity recreated in dynamic 3D models. Successful
completion of these aims will advance our understanding of the cellular and molecular drivers of IPF, building
the foundation for high-throughput discovery and screening of therapeutics for precision medical treatments.
项目摘要
纤维化疾病解释了全球发病率和死亡率的重要来源。特发性肺
纤维化(IPF)是一种慢性,进行性和威胁生命的肺部疾病,最普遍。
IPF仅在美国就会影响100,000名患者,每个患者大约有34,000个新的全球诊断
年。大多数IPF患者在3 - 5年内屈服于呼吸衰竭,唯一可用的患者
治疗治疗无法治愈该疾病。随着美国人口的平均年龄增加,它是
研究人员和从业人员必须共同努力,以确定停止或反向IPF的新目标。
通过传统的细胞培养技术和临床前动物发现IPF的新治疗靶标
模型有几个局限性,因为这些系统不能充分再现人类的关键方面
生理。最重要的是,动态细胞 - 矩阵和细胞 - 细胞相互作用很难在
体外驱动纤维化的进展:例如,尚不清楚细胞外基质的变化是否发生变化
(ECM)周围组织机械性能的组成或随后的变化是
IPF的更有效驱动因素,即最佳治疗靶标。新工具和技术使我们能够
动态研究纤维化随时间的发病机理仍然是尚未解决的挑战。
我的实验室已经开发了新的方法来合成和微观制造一类新的生物材料
进行动态细胞ECM研究,目前在传统的纤维化模型中无法进行。我们的创新性
平台结合了可点击的聚(乙二醇)(PEG)主链与可单击的脱细胞ECM
(DECM)来自健康或患病的肺组织,因此我们可以将纤维化组织组成脱致(例如,
随后的机械性能变化(例如,刚度增加),胶原蛋白含量增加)。
具体而言,健康或IPF肺Decm将被合并到模拟的软(1-5 kPa)水凝胶基质中
健康的组织,然后暴露于聚焦的光将动态启动僵硬至纤维化水平(> 10 kPa)。
提出了三个目标,以设计和实施这种基于生物材料的策略,以构建新颖,高级
IPF体外模型的保真度。 AIM I:工程师PEG-的结构,组成和动态力学
DECM细胞培养平台以概括远端肺组织; AIM II:询问组成的影响和
使用动态PEG-DECM生物材料平台上的成纤维细胞激活上的机械性能;和AIM III:
确定在动态3D模型中重现的纤维化活性的可药物敏感靶标。成功的
这些目标的完成将提高我们对IPF的细胞和分子驱动因素的理解
高通量发现和筛查精确药物治疗的基础。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An Introduction to Engineering and Modeling the Lung.
肺工程和建模简介。
- DOI:10.1007/978-3-031-26625-6_1
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Tanneberger,AliciaE;Weiss,DanielJ;Magin,ChelseaM
- 通讯作者:Magin,ChelseaM
Engineering Dynamic 3D Models of Lung.
肺工程动态 3D 模型。
- DOI:10.1007/978-3-031-26625-6_9
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Blomberg,Rachel;Hewawasam,RukshikaS;Šerbedžija,Predrag;Saleh,Kamiel;Caracena,Thomas;Magin,ChelseaM
- 通讯作者:Magin,ChelseaM
Engineering Tissue-Informed Biomaterials to Advance Pulmonary Regenerative Medicine.
- DOI:10.3389/fmed.2021.647834
- 发表时间:2021
- 期刊:
- 影响因子:3.9
- 作者:Campbell DR Jr;Senger CN;Ryan AL;Magin CM
- 通讯作者:Magin CM
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chelsea M Magin其他文献
Chelsea M Magin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chelsea M Magin', 18)}}的其他基金
Hybrid Hydrogel Biomaterials Comprising Clickable Decellularized Extracellular Matrix for Engineering Dynamic 3D Models of Fibrosis
包含可点击脱细胞细胞外基质的混合水凝胶生物材料,用于工程纤维化动态 3D 模型
- 批准号:
10224335 - 财政年份:2020
- 资助金额:
$ 53.2万 - 项目类别:
Hybrid Hydrogel Biomaterials Comprising Clickable Decellularized Extracellular Matrix for Engineering Dynamic 3D Models of Fibrosis
包含可点击脱细胞细胞外基质的混合水凝胶生物材料,用于工程纤维化动态 3D 模型
- 批准号:
10026363 - 财政年份:2020
- 资助金额:
$ 53.2万 - 项目类别:
Engineering ex vivo models of lung cancer and chemoprevention
肺癌和化学预防的离体工程模型
- 批准号:
10038486 - 财政年份:2020
- 资助金额:
$ 53.2万 - 项目类别:
Hybrid Hydrogel Biomaterials Comprising Clickable Decellularized Extracellular Matrix for Engineering Dynamic 3D Models of Fibrosis
包含可点击脱细胞细胞外基质的混合水凝胶生物材料,用于工程纤维化动态 3D 模型
- 批准号:
10454853 - 财政年份:2020
- 资助金额:
$ 53.2万 - 项目类别:
Advanced Micro-patterned Wound Dressings for Enhanced Epithelialization
用于增强上皮化的先进微图案伤口敷料
- 批准号:
8832483 - 财政年份:2014
- 资助金额:
$ 53.2万 - 项目类别:
Hydrogel Scaffolds with Engineered Dynamically Tunable Topographies for hMSC Diff
具有用于 hMSC Diff 的工程动态可调拓扑的水凝胶支架
- 批准号:
8199807 - 财政年份:2011
- 资助金额:
$ 53.2万 - 项目类别:
Hydrogel Scaffolds with Engineered Dynamically Tunable Topographies for hMSC Diff
具有用于 hMSC Diff 的工程动态可调拓扑的水凝胶支架
- 批准号:
8333062 - 财政年份:2011
- 资助金额:
$ 53.2万 - 项目类别:
相似国自然基金
基于腔光机械效应的石墨烯光纤加速度计研究
- 批准号:62305039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于自持相干放大的高精度微腔光力加速度计研究
- 批准号:52305621
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
位移、加速度双控式自复位支撑-高层钢框架结构的抗震设计方法及韧性评估研究
- 批准号:52308484
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高离心加速度行星排滚针轴承多场耦合特性与保持架断裂失效机理研究
- 批准号:52305047
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于偏心光纤包层光栅的矢量振动加速度传感技术研究
- 批准号:62305269
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Unanticipated roles of C5aR1 Signaling Leading from Acute to Chronic Kidney Disease
C5aR1 信号转导从急性肾病到慢性肾病的意外作用
- 批准号:
10591053 - 财政年份:2023
- 资助金额:
$ 53.2万 - 项目类别:
Mechanisms of cardiomyocyte dysfunction due to the E258K-MYBPC3 mutation modeled in patient-derived cardiomyocytes
在患者来源的心肌细胞中建模 E258K-MYBPC3 突变引起的心肌细胞功能障碍的机制
- 批准号:
10794930 - 财政年份:2022
- 资助金额:
$ 53.2万 - 项目类别:
New Methods and Tools for Computational Drug Discovery
计算药物发现的新方法和工具
- 批准号:
10633106 - 财政年份:2021
- 资助金额:
$ 53.2万 - 项目类别:
Impact of ALS-linked mutations on the structure, dynamics and function of profilin-1
ALS 相关突变对 profilin-1 结构、动力学和功能的影响
- 批准号:
10533362 - 财政年份:2021
- 资助金额:
$ 53.2万 - 项目类别:
Identifying Therapeutic Targets for Stage III Melanoma
确定 III 期黑色素瘤的治疗靶点
- 批准号:
10520052 - 财政年份:2019
- 资助金额:
$ 53.2万 - 项目类别: